Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The restrictions on carbon dioxide emissions introduced by the European Union encourage experimental work on new-generation materials containing smaller amounts of clinker. At present, silica fly ashes from the combustion of hard coal are widely used in the technology of cement and concrete in Europe and Poland. This research aims to assess the physical and chemical properties of fly ashes from the thermal treatment of sewage sludge for use in concrete technology in relation to applicable standards and determine their impact on the natural environment. The established concentrations of heavy metals are below the maximum values required when discharging sewage into the ground or waters and also meet the necessary leaching limits when inert waste is allowed to be landfilled and on substances particularly harmful to the aquatic environment. On this basis, it was found that the migration of heavy metals from concrete with the addition of ashes to the water environment is insignificant and should not be a major problem. In addition, the tests showed that the activity index did not exceed the limit value.
EN
Caring for the environment, in accordance with the principles of sustainable development, as well as the increase in the standard of living of society, introduces the need to conduct proper waste management. Construction is an industry with great potential for the management of glass waste as part of material recycling. The construction sector is characterized by high material consumption, with a limited amount of natural resources, meaning that research is constantly being performed on the possibility of replacing them with other common ingredients. A feature of the building materials industry is also the pursuit of continuous improvement of the properties of manufactured materials. The paper presents the research results on the impact of the partial replacement of Portland cement and aggregate with glass waste on strength parameters and frost resistance. For the purpose of experimental work, a concrete mix based on the C20/25 standard concrete with CEM I 42.5R Portland cement, in which from 0 to 20% of the cement or aggregate weight is replaced with glass waste (i.e., glass flour and glass cullet), is designed. In the test range, the glass flour slightly affected the deterioration of the compressive strength, while the glass cullet had no effect on the compressive strength after 56 days of maturation. Moreover, the addition of glass flour increases the bending strength, while the addition of glass cullet maintains a comparable bending strength compared to the reference concrete. The obtained concretes are frost-resistant concrete F150.
EN
The restrictions on carbon dioxide emissions introduced by the European Union encourage experimental work on new generation materials containing smaller amounts of clinker. Currently, silica fly ash from the combustion of hard coal is widely used in cement and concrete technology in Europe and in Poland. Their wide application is mainly determined by their chemical and phase composition, especially pozzolanic activity, their high fineness, similar to cement. The aim of the research was to assess the properties of fly ash from thermal treatment of sewage sludge in terms of use in concrete technology in relation to EN 450-1, ASTM-C618-03 and ASTM C379-65T. The obtained test results confirm that the tested material has a different physicochemical composition and does not meet the requirements related to the use of ash in the production of concrete. In addition, the research showed the possibility of producing ordinary concrete, modified with fly ash from thermal treatment of sewage sludge. The average compressive strength for concrete containing 15% of ash from Cracow was set at 48.1 MPa and 49.2 MPa after 28 and 56 days of maturation, for ash from Warsaw at 42.0 MPa and 45.1 MPa, and for ash from Łódź at 36.2 MPa and 36.2 MPa. The determined concentrations of heavy metals are below the maximum values to be met when discharging waste water into the ground or water, the leaching limits required for accepting inert waste for disposal and for substances particularly harmful to the aquatic environment. On this basis, it was found that the migration of heavy metals from concretes with ash addition to the aquatic environment is insignificant and should not be a significant problem.
PL
W artykule przedstawiono analizę wyników badań składu popiołów lotnych z termicznego przekształcania osadów ściekowych [SSA z ang. sewage sludge ash], pobranych z trzech spalarni zlokalizowanych w Warszawie, Krakowie i Łodzi oraz oznaczono wymywania wybranych metali ciężkich z badanych popiołów lotnych i betonów zwykłych klasy C20/25 z częściową zamianą - do 20% cementu na popiół lotny. Wykonane badania laboratoryjne wykazały, że mają porównywalny skład granulometryczny, natomiast właściwości fizyko-chemiczne badanych popiołów lotnych różnią się od tradycyjnie stosowanych w technologii betonu popiołów ze spalania węgla. SSA charakteryzują się przeciętnie mniejszą zawartością tlenków krzemu, żelaza i aluminium przy wielokrotnie większej zawartości fosforu. Badania wymywania wskazują na małą mobilność metali ciężkich spełniającą polskie przepisy dotyczące możliwości wykorzystania SSA w budownictwie do określonych zastosowań. Jednocześnie nie stanowią istotnego zagrożenia dla zdrowia ludzi i nie szkodzą środowisku. Odpady budowlane zawierające SSA mogą być składowane na składowiskach odpadów obojętnych.
EN
The article presents an analysis of the results of research on the composition of fly ash from the thermal processing of sewage sludge [SSA] collected from three incineration plants located in Warsaw, Cracow and Łódź. It determines the leaching values of selected heavy metals from the tested fly ash and ordinary class concrete C20/25 with partial replacement - up to 20% of cement with fly ash. The laboratory tests performed showed that they have a comparable granulometric composition. In contrast, the physico-chemical properties of the tested fly ashes differ from ashes from coal combustion traditionally used in concrete technology. SSA is characterized by an average lower content of silicon, iron, and aluminium oxides with a much higher content of phosphorus oxides. Leaching tests indicate low mobility of heavy metals, meeting Polish regulations regarding the possibility of using SSA in construction for specific applications. At the same time, they do not pose a significant threat to human health or the environment. Construction waste containing SSA may be disposed of in inert waste landfills.
EN
Concrete is currently the most widely used man-made composite material and second only to water in the entire range of materials used. It is a material with a high potential to adapt to specific operating conditions and can be made from local raw materials (aggregate, cement, water, and mineral additives), which can be selected to minimize the carbon footprint. The use of fly ash from the thermal conversion of sewage sludge in concrete is in accord with the advice on waste management proposed in the European Union. This paper presents the results of research on the effect of the partial replacement of Portland cement with this material on the strength parameters, frost resistance, and carbonation of concrete compared to reference concrete and to concrete containing a conventional additive – siliceous fly ash. In addition, the potential environmental impact of the use of sewage sludge ash was investigated by determining the leachability of heavy metals. Concrete mixtures of C20/25 ordinary concrete, based on CEM I 42.5R Portland cement, with varying ash contents comprising 0–20% of the cement mass, were produced for the experimental work. The obtained test results confirmed the possibility of producing plain concrete modified with fly ash from the thermal treatment of sewage sludge and the concrete’s compliance with the environmental requirements relating to the leaching of heavy metals.
PL
Konstrukcje budowlane i ich elementy muszą spełniać wymagania dotyczące stateczności, sztywności i nośności. Są to warunki decydujące o bezpieczeństwie konstrukcji zarówno w okresie budowy, jak i eksploatacji. Ocena bezpieczeństwa odbywa się na podstawie badań diagnostycznych mających na celu kontrolę jakości wykonania wznoszonych obiektów lub zlokalizowanie uszkodzeń elementów konstrukcji powstałych podczas eksploatacji. W artykule skupiono się na eksperymentalnej analizie modalnej SISO ceramicznych elementów murowych. Doświadczenie przeprowadzono na dwudziestu próbkach cegły pełnej, z czego celowo uszkodzono połowę z nich, aby możliwa była ocena przydatności zastosowanej metody w postawionym problemie badawczym.
EN
Building structures and their elements must meet the requirements related to stability, stiffness and strength. These are the conditions that determine the safety of the structure both during construction and operation. The safety assessment is carried out on the basis of diagnostic tests aimed at checking the quality of the erected objects or locating damages to structural elements caused during operation. The work focuses on the experimental SISO modal analysis of ceramic masonry elements. The experiment was carried out on twenty samples of solid and perforated bricks, half of which were deliberately damaged and thus to be able to assess the suitability of the method used in the research problem posed.
EN
On the basis of the registered indications of the water meter, a study on the size and variability of water consumption on the WULS campus in the academic years 2012/16 is presented. The average specific water consumption at a time when classes are implemented amounted to 26.6 dm3 per student per day for full-time studies student and 19.7 dm3 per student per day for the student part-time studies. During the holiday season, the rates are lower at 18.4 and 11.8 dm3 per student per day, respectively. These ratios were determined without taking the water consumption in the dorms into account. The daily peaking factor amounted (Nd) to 1.36, while the hourly peaking factor (Nh), reached 1.71. Within the week cycle, the highest water consumption was observed in Tuesdays and the lowest – in Sundays. The average Tuesday demands are 40% higher than the Sunday demands. The water consumption peaks during the day occur between 11 a.m. and 1 p.m. as well as 11 p.m. and 1 a.m. The hourly structure of the water distribution in the WULS-SGGW campus is similar to the weekend structure of water distribution in multi-family residential buildings, with the exception of the later occurrence of the evening summit.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.