Along with the technological progress, unmanned aerial vehicles have found application not only in a military, but also in civil applications. The article presents Concept and preliminary calculations of an optionally piloted research platform. A literature review revealed a small number of existing aircraft of similar design. The analysis began with basic analytical calculations for airplanes, and more specifically their wings. The initial concept of the external shape of the designed aircraft was determined, and then the initial optimization of the structure was carried out on the basis of mathematical and computer analysis. Another goal of the research will be the construction of a demonstrator and its analysis.
This article presents the results of work related to the design, analysis, and manufacturing of the shaft for an electric go-kart. Works considered the stiffness of the shaft for various conditions affecting the vehicle while driving. In the previous stage of the project, the electric motor and gear transmission were selected. The main goal of this case study was to design the shaft for 10 kW electric go-kart. The rear driving axle of the go-kart is not equipped with a differential. The equal rotational speed of two rear wheels causes that occurs skidding and greater forces acting on the vehicle and driver when cornering. We were considering two types of the shaft – full and drilled. The first one provides greater stiffness, the second one is “softer”. The analysis allowed for the selection of a more appropriate shaft, and then for its manufacture and assembly in the vehicle.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.