Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Additive manufacturing of metallic biomaterials: a concise review
EN
Additive manufacturing (AM) is one of the critical techniques of novel medical devices which is capable of processing complicated or customized structures to best match the human’s bones and tissues. AM allows for the fabrication of devices with optimal architectures, complicated morphologies, surface integrity, and regulated porosity and chemical composition. Various AM methods can now consistently fabricate dense products for a range of metallic, nonmetallic, composites, and nanocomposites. Different studies are available that describe the microstructure and various properties of 3D-printed biomedical alloys. However, there are limited research on the wear characteristics, corrosion resistance, and biocompatibility of 3D-printed technology-constructed biomedical alloys. In this article, AM metallic biomaterials such as stainless steel, magnesium, cobalt–chromium, and titanium are reviewed along with their alloys. The helicopter view of essential characteristics of these additively manufactured biomaterials is comprised. The review will have a significant impact on fabricating metallic surgical equipment and its sturdiness in the biomedical field.
EN
The present study investigates the onset of penetrative convection induced by selective absorption of radiation in a magnetic nanofluid saturated porous medium. The influence of Brownian motion, thermophoresis, and magnetophoresis on magnetic nanofluid treatment is taken into consideration. The Darcy’s model is selected for the porous medium. We conduct a linear stability analysis to examine the onset of instability and evaluate the results for two different configurations, namely, when the layer is heated from below and when the layer is heated from above. The numerical investigations are carried out by applying the Chebyshev pseudospectral method. The effect of the porosity parameter E, parameter Y (represents the ratio of internal heating to boundary heating), Lewis number Le, concentration Rayleigh number Rn, Langevin parameter αL, width of nanofluid layer d, diffusivity ratio η, and modified diffusivity ratio NA is examined at the onset of convection. The results indicate that the convection commences easily with an increase in the value of Y, Le, and NA but opposite in the case with a decrease in the value of E, αL, η and d for both the two configurations. The parameter Rn advances the onset of convection when the layer is heated from below, while delays the onset of convection when the layer is heated from above.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.