Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W pracy przedstawiono porównanie wyników oceny narażenia człowieka na drgania miejscowe w przypadku zastosowania rękawic. Analizowany przypadek oceniono dwoma metodami, tzn. metodą konwencjonalną (z uwzględnieniem kryterialnego przyspieszenia drgań) i metodą energetyczną (wykorzystując wartości składników energii związanych z człowiekiem). Analizy przeprowadzono na podstawie wyników badań teoretycznych w systemie biodynamicznym człowiek - zmechanizowane narzędzie ręczne. W tym celu wykorzystano modele człowieka i rękawicy określone w normie ISO 10068:2012. Przeprowadzona analiza wykazała, że każda z metod daje inne wyniki oceny wpływu rękawic na ochronę człowieka. W artykule przedstawiono analityczne rezultaty i różnice w ocenie narażenia człowieka na drgania miejscowe otrzymane obiema metodami dla przykładowej sytuacji pracy operatora z wykorzystaniem zmechanizowanego narzędzia ręcznego.
EN
The article presents a comparison of the results of human exposure to hand-arm vibration in case of using gloves. The analyzed case was assessed by two methods, i.e., performed by conventional method (including the criterion of accelerations of vibrations) and energy method (based on the dose of energy flowing through the human during the operation of the tool). The analyzes were based on the results of the theoretical studies of biodynamics and energy flow in the human - tool system. The models of the human and the glove, specified in the ISO 10068:2012 standard, were used for this purpose. The analysis showed that results of the evaluation of the impact of gloves on human protection obtained between both methods are different. The article presents the analytical results and differences in the assessment of human exposure to hand-arm vibrations, using both methods, as an example for a situation, in which an operator works with mechanized handheld tool.
EN
The article is the second part of the article entitled “Assessment of the effectiveness of anti-vibration gloves. A comparison of the conventional and energy method. Introduction - part one” [4], which presents the assumptions and the construction of models of the biodynamic system consisting of the human operator, the anti-vibration glove and the hand-held power tool. The second part is devoted to a comparative analysis and interpretation of results obtained by means of the two methods. The analysis reveals a positive effect of the anti-vibration glove as a personal protective equipment, which reduces the operator’s exposure to vibrations generated by the angle grinder. However, the effectiveness of the glove was assessed differently by the conventional or the energy method. It was also found that the energy method was a better tool for analyzing the impact of vibrations at different phases of the tool’s operation.
EN
The article is an introduction to the assessment of the effectiveness of anti-vibration gloves. The assessment was conducted for a specific glove. The impact of the glove was taken into account in a model of the biodynamic system consisting of the human operator, the anti-vibration glove and the hand-held power tool. The synthetic model was created by integrating the physical model of the human body and the glove model specified in the International Standard ISO 10068:2012 with a model of an electric angle grinder. The first part of the study describes an alternative model of the glove, developed on the basis of experimental data. The article also presents a description of dynamic and energy models for analyzing dynamic structures of the biomechanical system. Results obtained at this stage are used to analyse and interpret the observed phenomena and to compare methods of assessing the effectiveness of anti-vibration gloves, which are discussed in detail in the second part.
PL
W pracy przedstawiono analizę wpływu parametrów dynamicznych rękawicy na obciążenie człowieka energią wibracyjną. W tym celu opracowano model energetyczny systemu Człowiek – Rękawica – Narzędzie, w którym wykorzystano model fizyczny człowieka z rękawicą według normy ISO 10068:2012 oraz zasady energetyczne, tzn. pierwszą zasadę rozdziału mocy oraz pierwszą zasadę przepływu energii w systemie mechanicznym. Ostatecznym celem pracy było przedstawienie zastosowania całościowej metody energetycznej do poprawy przepływu energii przez system Człowiek – Rękawica – Narzędzie, który zależy tylko od właściwości rękawicy. Wyznaczony metodą numeryczną przepływ energii w strukturze dynamicznej systemu pozwolił stwierdzić, że parametry dynamiczne rękawicy antywibracyjnej, tj. masowe, tłumiące i sprężyste, wpływają na obciążenie człowieka energią wibracyjną.
EN
The aim of this work is an analysis of influence of glove parameters on the human’s energy load. The study proposed a model of the Human – Glove – Tool system. For this purpose the model of the human with the glove specified in the ISO 10068:2012 standard and energy principles, i.e. the first principle of energy flow and the first principle of power distribution in a mechanical system, were used. The aim of the study is presentation of the energy method by means of which the energy flow in the Human – Glove – Tool system can be improved. This flow depends only on the properties of the glove. The defined by numerical simulation flow of energy in the dynamic structure of the system allowed to demonstrate that dynamic parameters of the glove, i.e. coefficients of mass, damping and stiffness affect on the human’s energy load.
5
Content available Power distribution in anti-vibration gloves
EN
The article analyses power distribution in an anti-vibration glove. The glove of interest was modelled in a biodynamic model of the Human – Glove – Tool system. The model was a combination of the human model and the glove model specified in the ISO 10068:2012 standard and the model of the vibration tool. To determine the power distribution in the glove, its energy model was developed. The power distribution in the model was determined using numerical simulation in order to show how power was distributed in the dynamic structure of the anti-vibration glove. Three kinds of powers were distinguished, which are related to forces of inertia, dissipation and elasticity. It turned out that out of the three kinds of powers identified in the anti-vibration glove, only one is dominant: namely the power of dissipation.
EN
The article continues the analysis presented in the article „Power distribution in anti-vibration gloves” [6], which described the approach adopted to construct an energy model of the Human – Glove – Tool system (H – G – T). The outcome of the analysis was the power distribution calculated only for the anti-vibration glove. This article continues the energy analysis for another subsystem of the H – G – T system – the human physical model. The energy method was also used to calculate the power distribution in its dynamic structure in order to account for interactions between the elements of the H – G – T system. The results obtained in the study indicate that the power distribution in the human physical model and in the glove model is completely different.
PL
W pracy przedstawiono strukturalny rozdział energii w rękawicy antywibracyjnej z uwzględnieniem oddziaływania człowieka. W tym celu opracowano model biodynamiczny Człowiek – Rękawica Antywibracyjna – Narzędzie. W modelu wykorzystano model dynamiczny człowieka z rękawicą antywibracyjną wg normy ISO 10068:2012. Pełny model biodynamiczny badanego systemu uzyskano na drodze syntezy tego modelu z modelem narzędzia wibracyjnego. Następnie opracowano energetyczną wersję biodynamicznego modelu badanego systemu. Metoda energetyczna umożliwia wyznaczenie trzech składników energii, które związane są z siłami: bezwładności, oporów ruchu oraz sprężystości. Wyznaczony metodą numeryczną przepływ energii w strukturze dynamicznej systemu pozwolił stwierdzić, jak rozdziela się energia w rękawicy antywibracyjnej. Otrzymane rezultaty wykazały, że w rękawicy występuje jeden dominujący rodzaj energii, tzn. energia sił strat.
EN
The article presents the structural distribution of energy in an anti-vibration glove with the account of a human. An analysis required the construction of model of a Human – Anti-vibration Glove – Tool system. The model of the human with the anti-vibration glove specified in the ISO 10068:2012 standard was used for this purpose. The final bio-dynamic model of the system was obtained by the synthesis of this model with the model of the vibrating tool. The next step in the modeling of the system was to develop a corresponding energy model for the system. Energy method allows to determine the three components of energy that are associated with the forces of inertia, dissipation and elasticity. The defined by numerical simulation flow of energy in the dynamic structure of the system allowed to show a structural distribution of energy in the anti-vibration glove. Results showed that in the glove, there is one dominant type of energy i.e. energy of dissipation.
EN
The article presents the differences in energy flow for two human physical models from ISO 10068:2012. The models are compared on the basis of a numerical simulation of energy flow implemented with MATLAB/simulink software. For purposes of comparison, the dynamics of the two Human-Tool systems is mathematically modelled and then used to derive their energy models. The model dynamic structures are fully specified in order to determine and compare three kinds of powers. The study revealed differences between the model characteristics when analysed along different directions of vibrations and as a whole.
EN
The main aim of this study is to present an energy comparison of two human physical models taking into account hand-arm vibrations, which are based on the power distribution in their dynamic structure. The method used in the study takes advantage of a close relationship between the dynamics of the systems and energy-related phenomena that occur within them. The energy comparison of the two human physical models required construction of energy models of a Human-Tool system and finding their solutions. For this purpose, programs have been developed using the MATLAB/simulink software to simulate power distribution in the systems. The simulation revealed a discrepancy between the two models in terms of three types of powers and globally in the system as a whole.
EN
The article presents an approach to assessing human physical models specified in the ISO 10068:2012 standard. The models were compared on the basis of energy analysis, which was conducted in terms of power distribution. Since the models in question have a fully specified internal structure, the investigation focused on power distribution in the models and the total power in the system. The article provides a description of the construction and energy-based modelling of Human-Tool systems. Simulation results obtained during the study were analysed in terms of health risks posed to the tool operator.
PL
W pracy przedstawiono sposób oceny modeli fizycznych człowieka z normy ISO 10068:2012. Modele porównano metodą energetyczną, która w prezentowanym przypadku została zrealizowana w dziedzinie rozdziału mocy. Badane modele posiadają w pełni określoną strukturę wewnętrzną, dlatego zwrócono uwagę na rozdział mocy w tych modelach oraz moc globalną w całym systemie. Przedstawiono proces budowy i modelowania energetycznego systemów Człowiek – Narzędzie. Zaprezentowano również wyniki symulacji oraz powiązano otrzymane wartości z zagrożeniami dla zdrowia człowieka.
EN
This article is a continuation of the article entitled „A comparison of human physical models used in the ISO 10068:2012 standard based on power distribution – Part 1” [5], which presented a method of energybased assessment of two human physical models. The first article revealed a discrepancy between the models in terms of three types of power and the total power. The focus of the present study was to determine the order of energy inputs in the dynamic structure and link different types of power to potential threats they pose to human health. Additionally, differences between the models were discussed.
EN
The study analyses differences in the flow of energy for two human physical models specified in the ISO 10068:2012 standard. For this purpose, two mathematical models of the Human–Tool system in question were developed using the Lagrange equation of the second kind. Corresponding energy models were then created for each mathematical model and tested by means of digital simulation in the MATLAB/Simulink environment. The study revealed a discrepancy between the models in terms of different types of power and in the total power.
PL
W artykule przedstawiono energetyczną metodę oceny modeli fizycznych na przykładzie modelu systemu Człowiek – Narzędzie. Jest to metoda stosowana do porównania systemów mechanicznych i biomechanicznych, która realizowana jest w dziedzinie rozdziału mocy i przepływu energii w ich strukturach dynamicznych. Zastosowana metoda wykorzystuje ścisły związek między dynamiką badanych systemów i zjawiskami energetycznymi, które zachodzą w badanych systemach. Przeprowadzenie oceny energetycznej modeli fizycznych wymagało zbudowania energetycznych modeli systemów Człowiek – Narzędzie i ich rozwiązania. W tym celu opracowano programy symulujące przepływ energii w systemach w środowisku MATLAB/Simulink. W ten sposób wykazano różnicę pomiędzy modelami w przepływie rodzajowym energii i globalnie w całym systemie.
EN
The main aim of this study is a presentation of energy comparison between two human physical models in case of hand-arm vibrations which are based on the energy flow in their dynamic structure.The method which was used, takes advantage of theclose relationshipbetween the dynamicsof the systems and energetic phenomena that occurin the studied systems.The energy evaluation of physical models of human required tobuildthe energy modelsof the Human– Tool systems and their solutions. For this purpose, there are elaborated programs which realize energy flow of systems in the MATLAB/simulink software. In this way, showed the discrepancy between models in the participation of three types of energy and globally in whole system.
EN
The interactions of G-quadruplex DNA with two oxidation products of papaverine, 6a,12a-diazadibenzo-[a,g]fluorenylium derivative (1) and 2,3,9,10-tetramethoxy-12- oxo-12H-indolo[2,1-a]isoquinolinium cation (2) were investigated. Effect of the organic modifier (EtOH) and NaCl on the spectral properties and aggregation of free ligands and on the DNA-binding affinity were assessed. Ligand 1 exhibited tendency for aggregation and showed higher binding selectivity for G-quadruplex DNA over double-stranded DNA. Both ligands were capable of interacting with DNA according to three binding modes: (i) electrostatic interactions, (ii) classical intercalation to dsDNA, and (iii) the specific binding to quadruplex DNA. The cytotoxic activity of ligand 2 was generally higher than that for ligand 1, approaching a micromolar concentration level that may suggest its telomerase inhibition activity.
EN
The DNA binding affinity and anion effect on the aggregation of a G-quadruplex selective ligand, 6a,12a-diazadibenzo-[a,g]fluorenylium derivative, were studied by UV-Vis absorption, molecular modeling and fluorescence spectroscopy. The anion character and its concentration influenced the spectral properties of ligand aggregates. Observed spectral peculiarities were discussed in terms of the formation of H- and J-type aggregates. The DNA binding mode and affinity of the ligand depended on the salt concentration; preferential binding to G-quadruplexDNAwas clearly seen at higher salt concentration.
16
Content available remote Precompliance measurements using a time-domain measurement system
PL
Sprawdzenie zgrubnego (wstępnego) spełnienia warunków kompatybilności urządzenia elektrycznego jest ważnym zadaniem pozwalającym na redukcję kosztów projektu urządzenia. Praca przedstawia zalety pomiarów w dziedzinie czasu prowadzących do wstępnego ustalenia warunków kompatybilności elektromagnetycznej urządzenia. Cyfrowe przetworzenie sygnałów pomierzonych pozwala emulować w czasie rzeczywistym różne wartości charakteryzujące stany pracy urządzenia na podstawie pomiarów czasowych, w tym wartości szczytowych, średnich, średniokwadratowych itp. Dyskutowane są systemy pomiarowe EMC promieniowania emisyjnego dla różnych klas interfejsów elektromagnetycznych.
EN
A low-cost EMC precompliance test-set is essential to reduce the development costs of any electrical device. In this paper we discuss the advantages of broad-band time-domain precompliance measurement techniques applied to all types of electromagnetic interferences. The digital signal processing of EMI measurements allows to emulate in real-time the various modes of conventional analogous equipment, e.g. peak-, average-, RMS- and quasi-peak-detector mode. Since time-domain techniques allow to process the whole amplitude spectrum in parallel, the measurement time may be reduced by at least one order of magnitude. Precompliance measurement results obtained with the time-domain electromagnetic interference (TDEMI) System for conducted and radiated emissions and detailed statistical signal descriptions of all classes of electromagnetic interferences are discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.