Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The development of additive manufacturing (AM) techniques has sparked interest in porous structures that can be customized in terms of size, shape, and arrangement of pores. Porous lattice structure (LS, called also lattice struct) offer superior specific stiffness and strength, making them ideal components for lightweight products with energy absorption and heat transfer capabilities. They find applications in industries such as aerospace, aeronautics, automotive, and bone ingrowth applications. One of the main advantages of additive manufacturing is the freedom of design, control over geometry and architecture, cost and time savings, waste reduction, and product customization. However, the designation of appropriate struct/pore geometry to achieve the desired properties and structure remains a challenge. In this part of the study, five lattice structs with various pore sizes, with two volume fractions for each, and shapes (ellipsoidal, helical, X-shape, trapezoidal, and triangular) were designed and manufactured using selective laser sintering (SLS) additive manufacturing technology. Mechanical properties were tested through uniaxial compression, and the apparent stress-strain curves were analyzed. The results showed that the compression tests revealed both monotonic and non-monotonic stress-strain curves, indicating different compression behaviors among the structures. The helical structure exhibited the highest resistance to compression, while other structures showed similarities in their mechanical properties. In Part II of this study provides a comprehensive analysis of these findings, emphasizing the potential of purpose-designed porous structures for various engineering applications.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.