Given a linear discrete system with initial state x0 and output function yi , we investigate a low dimensional linear system that produces, with a tolerance index ϵ, the same output function when the initial state belongs to a specified set, called ϵ-admissible set, that we characterize by a finite number of inequalities. We also give an algorithm which allows us to determine an ϵ-admissible set.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
With reference to the work of Verriest and Lewis (1991) on continuous finite-dimensional systems, the linear quadratic minimum-time problem is considered for discrete distributed systems and discrete distributed time delay systems. We treat the problem in two variants, with fixed and free end points. We consider a cost functional J which includes time, energy and precision terms, and then we investigate the optimal pair (N,u) which minimizes J.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We consider a discrete system described by xi+1=Axi, i>0 with the output function yi=Cxi, i>0 which is subject to the constraints (...). Then we investigate the admissible nonlinear perturbations (Ni)i, i.e., the ones such that the corresponding perturbed output function (...) remains in the constraints set omega for all i>0.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.