This paper is devoted to the application of the two-stage evolutionary-neuro approach for stochastic optimization problems. The algorithm is based on the stochastic representation of the data. Chromosomes are represented by multidimensional random vectors consisting of random genes in the form of independent random variables with the Gaussian density probability function. The stochastic optimization problem is repalced by deterministic one by evolutionary computing for vector genes consisting of mean values and standard deviations. In the first stage the EA is used. As the second stage in the presented approach the special local gradient method with neuro-computing is proposed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.