Detailed characterization of light non-aqueous phase liquid contaminant plume is essential for mapping remediation scope effectively. Electrical resistivity tomography is increasingly popular for delineating the geometry of subsurface contamination. In this study, the low resolution and limited penetration depth drawbacks from traditional survey arrays were resolved with optimized arrays generated using ‘Compare R’ method. Numerical example first proved its efficiency in locating contaminated areas under restricted survey space. The presence of ethylbenzene inside a manufacturing building has shown high resistive anomaly, and it has already leaked into deep locations from resistivity results. However, the transport of ethylbenzene was limited due to surrounding low permeable clay layer. The boundaries of the contaminant plume were further quantified using interpolated 3D resistivity results, which help to refine the remediation scope. The reconstructed scope was only 1/3 of the one from traditional borehole data interpolation, resulting in a more precise remediation cost estimate. In the end, we conclude the advantage of enhanced resolution and refined cost of remediation strategy by applying optimized array in contaminated site survey.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.