Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A simple and fast high-performance thin-layer chromatographic method has been developed for the simultaneous determination of ampicillin and amoxicillin. Titanium(IV) silicate (a synthetic inorganic ion-exchanger)-coated thin-layer chromatography (TLC) plates were used to separate them, employing a mixture of K2HPO4 (0.1 M) + KH2PO4 (0.1 M), 1:1 (υ/υ), as mobile phase. The development time was 18 min. The plates were sprayed with fresh 1% solution of ninhydrin in ethanol. The developed method enables highly contrasted chromatograms with red purple spots in white background. Densitometric measurements were made at wavelength 546 nm using Camag TLC Scanner-3. The ampicillin and amoxicillin recovery of the total procedure were equal to 99.99 and 100.43, respectively. The procedure is quantitatively characterized. Linearities were r2 > 0.9958 and 0.9954 for ampicillin and amoxicillin, respectively, and the relative standard deviations were <0.89 and 0.61, respectively. The limits of detection were 2.9 and 1.5 ng per spot and the limits of quantification were 14.5 and 7.5 ng per spot, respectively. The method is rapid, selective, precise, and accurate and thus can be used for the routine analysis of pharmaceutical preparations in quality control laboratories of the pharmaceutical industry. The method is successfully applied for the determination of ampicillin and amoxicillin in human blood plasma and urine.
EN
A novel method using ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C 4 MIM][PF 6 ] as extracting solvent in head-space single drop microextraction followed by HPLC with fluorimetric detection has been developed for analysis of tributyltin (TBT) and triphenyltin (TPhT) in water. Experimental conditions related to SDME performance, for example micro-drop volume, extraction time, stirring rate, salt content, and sample volume were investigated. Under the optimized conditions (micro-drop volume, 10 μL; extraction time, 30 min; stirring rate, 900 rpm; salt concentration, 6%; sample volume, 6 mL), the linear range, detection limit ( S / N = 3), and reproducibility (RSD, n = 4) were 1−100 μL -1, 0.62 μL -1, and 7.8%, respectively, for TBT, and 2−100 μL -1, 0.95 μL -1, and 8.3% for TPhT. All micro-extraction experiments were performed at room temperature (25 ± 1°C). The optimized procedure was successfully used for analysis of TBT and TPhT in deionized water and waste water. Recovery of a 25 μL -1 spike was in the range 86.9–92.1%. The method has also been used for analysis of TBT and TPhT in natural water.
EN
The chromatographic behaviour of ascorbic acid, benzoic acid, butylated hydroxyanisole, butylated hydroxytoluene, butyraldehyde, butyric acid, cinnamaldehyde, citric acid, ethyl acrylate, ethyl benzoate, ethyl phydroxybenzoate, fumaric acid, lactic acid, lauric acid, maleic acid, methyl p-hydroxybenzoate, oleic acid, p-hydroxybenzoic acid, propionic acid, propyl gallate, propyl p-hydroxybenzoate, salicylic acid, sodium benzoate, and sorbic acid has been studied on thin layers of stannic silicate ion-exchanger with several aqueous, organic, and mixed mobile phases. Rapid separations of one food additive from many other food additives, and ternary and binary separations, are reported.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.