Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Potencjał dekarbonizacji zabytkowej kamienicy w Warszawie
PL
Konieczność zmniejszenia udziału budownictwa w ogólnym zapotrzebowaniu na nieodnawialną energię pierwotną i minimalizacji emisji dwutlenku węgla na etapie eksploatacji budynków wymusza opracowanie planu termomodernizacji i dekarbonizacji budynków. Proces ten wymaga jednak szczególnego planowania w przypadku obiektów zabytkowych. W artykule przeprowadzono analizę stanu istniejącego i opracowano dwa warianty termomodernizacji jednej z przedwojennych, zabytkowych kamienic warszawskich przy ulicy Kopernika 23. Sprawdzono, jak zmiany w budynku mogą wpłynąć na jego efektywność energetyczną oraz emisję CO2 i innych szkodliwych substancji, a także poprawę komfortu użytkowania budynków. Głównym założeniem było zmniejszenie zapotrzebowania na nieodnawialną energię pierwotną oraz zminimalizowanie emisji CO2. W przedstawionych propozycjach wzięto również pod uwagę architekturę budynku i jego otoczenie.
EN
The need to reduce the share of construction in the overall demand for non-renewable primary energy and to minimize carbon dioxide emissions during the operation stage of buildings requires the development of a plan for renovation and decarbonization of buildings. However, this process requires special planning for historic buildings. The article analyzes the existing state and develops two variants of renovation of one of Warsaw's pre-war historic apartment buildings at 23 Kopernika St. It examines how changes to the building can affect its energy efficiency and emissions of CO2 and other pollutants, as well as improve indoor comfort. The main goal was to reduce the demand for non-renewable primary energy and minimize CO2 emissions. The proposed solutions also took into account buildings architecture and surroundings.
EN
The quality of construction products and compliance with their declared performance is of key importance for the safety and health of users of construction works. In extreme cases, defects in building materials can lead to a construction disaster. In order to assess what is the quality of construction products available on the Polish market over the period 2016-2020, the measurement results available on the website of the General Office of Building Supervision (GUNB) were analyzed. The paper presents 13 groups of construction products divided into two sets. The results of the analysis show that there are still construction products on the market that do not meet the declared requirements. In 2020, 44% of thermal insulation products and 38% of membranes did not meet at least one tested property. The quality of construction adhesives, flooring and flooring products is average (in adopted scale of assessment). Due to too few samples/tests, it is difficult to draw clear conclusions for doors, windows and bonded products and aggregates. In all of these product groups, the number of tests performed annually should be increased.
3
Content available remote Plan dekarbonizacji budynków w Warszawie - badania termowizyjne
PL
Artykuł prezentuje wyniki pierwszego etapu prac nad planem dekarbonizacji budynków w Warszawie, co przyczyni się do poprawy zdrowia i komfortu życia jej mieszkańców, a jednocześnie przez zmniejszenie zapotrzebowania na energię do zminimalizowania problemu ubóstwa energetycznego. Celem tego etapu było wytypowanie budynków i ocenienie ich stanu technicznego pod kątem ochrony cieplnej za pomocą badań termowizyjnych.
EN
This article presents the results of the first phase of work on a plan to decarbonise buildings in Warsaw, which will both improve the health and well-being of its inhabitants and, by reducing energy demand, minimise energy poverty. The first stage of this work was to select buildings and assess their technical condition in terms of thermal protection using thermographic researches.
EN
The subject of this paper is the analysis of possible influence of climate change on the energy performance of building and indoor temperatures. The model is based on the Maison Air et Lumière house, which concept was developed as part of the Model Homo 2020 project. It was a low-energy, single family, detached house. The model was divided into three thermal zones and developed by using SketchUp software. The analysis of the climate change was made on the example of the city in Poland - Kielce and described in the first part of the paper. Dynamic calculations of the building model were performed by using the TRNSYS software. The calculations were made for three different scenarios relating to existing technical systems: ventilation, ventilation + heating, ventilation + heating + cooling. Annual energy consumption and rooms air temperature changes were estimated for each variant. The results showed higher risk of summer discomfort and change in energy balance of building what indicates the need to use the cooling system in the future during the summer to reduce the discomfort of overheating. In the variant without the cooling system, the percentage of time with an indoor temperature above 27°C increased from 23.7% to 44.2% in zone 2. The energy demand for heating was reduced by 23.4% compared to the current climate, and the energy consumption for cooling (with the cooling option) increased significantly by 232% compared to the current demand. Summarizing, research indicates that with global warming, the energy demand for heating will decrease and the cooling demand will increase significantly in order to maintain the required user comfort.
PL
Przedmiotem niniejszego artykułu jest analiza możliwego wpływu zmian klimatycznych na charakterystykę energetyczną budynku i temperatury wewnętrzne. Model budynku oparty jest na domu Maison Air et Lumière, którego koncepcja powstała w ramach projektu Model Homo 2020. Jest to niskoenergetyczny, jednorodzinny, wolnostojący dom. Model został podzielony na trzy strefy i stworzony przy użyciu oprogramowania SketchUp. Analiza zmian klimatycznych została przeprowadzona na przykładzie miasta Kielce i opisana w pierwszej części artykułu. Obliczenia symulacyjne przeprowadzono przy użyciu oprogramowania TRNSYS. Wykonano je dla trzech różnych scenariuszy odnoszących się do systemów technicznych - wentylacja, wentylacja + ogrzewanie, wentylacja + ogrzewanie + chłodzenie. Dla każdego wariantu określono roczne zapotrzebowanie energii oraz zmianę temperatury operatywnej w pomieszczeniach. Wyniki wykazały większe ryzyko wystąpienia dyskomfortu w okresie letnim oraz zmianę bilansu energetycznego budynku wraz z ocieplaniem się klimatu. W wariancie bez systemu chłodzenia odsetek czasu z temperaturą wewnętrzną powyżej 27°C wzrósł z 2,6% do 29,0% w strefie 3 oraz z 23,7% do 44,2% w strefie 2. Zapotrzebowanie na energię do ogrzewania zmniejszyło się o 23,4% w stosunku do obecnego klimatu, a zużycie energii do chłodzenia (przy opcji z chłodzeniem) znacznie wzrosło o 232% w stosunku do obecnego zapotrzebowania.
EN
The subject of this paper is to analyse the climate change and its influence on the energy performance of building and indoor temperatures. The research was made on the example of the city of Kielce, Poland. It was carried out basing on the Municipal Adaptive Plan for the city of Kielce and climate data from the Ministry of Investment and Development.The predicted, future parameters of the climate were estimated using the tool Weather Shift for Representative Concentration Pathways (RCP). The analysis took into consideration the RCP4.5 and RCP8.5 scenarios for years 2035 and 2065, representing different greenhouse gas concentration trajectories. Scenario RCP4.5 represents possible, additional radiative forcing of 4.5 W/m2 in 2100, and RCP8.5 an additional 8.5 W/m2. The calculated parameters included average month values of temperature and relative humidity of outdoor air, wind velocity and solar radiation. The results confirmed the increase of outdoor temperature in the following year. The values of relative humidity do not change significantly for the winter months, while in the summer months decrease is visible. No major changes were spotted in the level of solar radiation or wind speed. Based on the calculated parameters dynamic building modelling was carried out using the TRNSYS software. The methodology and results of the calculations will be presented in the second part of the paper.
PL
Przedmiotem artykułu jest analiza zmiany klimatu oraz jej wpływu na charakterystykę energetyczną budynku i temperaturę wewnętrzną. Badania przeprowadzono na przykładzie miasta Kielce. Ich podstawą był Miejski Plan Adaptacyjny dla miasta Kielce oraz dane klimatyczne z Ministerstwa Inwestycji i Rozwoju. Przewidywane, przyszłe parametry klimatu zostały oszacowane za pomocą narzędzia Weather Shift dla Representative Concentration Pathways (RCP). W analizie uwzględniono scenariusze RCP4.5 i RCP8.5 na lata 2035 i 2065, reprezentujące różne trajektorie wzrostu stężenia gazów cieplarnianych. Scenariusz RCP4.5 reprezentuje przewidywane, dodatkowe wymuszenie radiacyjne wynoszące 4,5 W/m2 w 2100 r., a RCP8.5 dodatkowe 8,5 W/m2. Wyznaczone parametry obejmowały średnie miesięczne wartości temperatury i wilgotności względnej powietrza zewnętrznego, prędkości wiatru i wielkości promieniowania słonecznego. Wyniki obliczeń potwierdziły wzrost temperatury zewnętrznej w kolejnych latach. Wartości wilgotności względnej powietrza nie zmieniają się znacząco dla miesięcy zimowych, natomiast w miesiącach letnich widoczny jest ich spadek. Nie zaobserwowano większych zmian w poziomie promieniowania słonecznego i prędkości wiatru. Na podstawie obliczonych parametrów przeprowadzono dynamiczne modelowanie budynku przy użyciu oprogramowania TRNSYS. Metodologia i wyniki obliczeń zostaną przedstawione w drugiej części artykułu.
PL
W Polsce trwa kampania na rzecz termomodernizacji domów jednorodzinnych oraz wymiany źródeł ogrzewania, m.in. w ramach programu „Czyste Powietrze”. Obniżenie zapotrzebowania na ciepło do ogrzewania w budynkach jednorodzinnych może spowodować, że w ich bilansie energetycznym wzrośnie udział zapotrzebowania na energię do podgrzania ciepłej wody użytkowej. W procesie termomodernizacji i wymiany źródeł ogrzewania warto zwracać uwagę na ograniczenie zużycia energii przez instalacje c.w.u. Działania te nie mogą jednak prowadzić do pogorszenia komfortu użytkowania ciepłej wody.
7
Content available remote Głęboka termomodernizacja budynków
PL
W artykule poruszono zagadnienie głębokiej termomodernizacji do standardu NZEB. Przedstawiono wymagania dotyczące tego procesu, jakie obowiązują w niektórych krajach europejskich. Omówiono najważniejsze elementy termomodernizacji przegród i związane z tym problemy. Podano przykłady udanych termomodernizacji wraz z analizą stopnia opłacalności tych inwestycji.
EN
The article discusses the issue of deep thermal modernisation in order to achieve the NZEB (zero-energy) standard. Requirements for this process that are in force in some European countries were presented. The most important elements of thermal modernization of partitions and related problems were discussed. Examples of successful thermal modernization investments are presented along with an analysis of the their profitability.
EN
Global warming causes changes in the buildings' demand of energy and the comfort of their users. This requires the modification of heating systems and air conditioning systems. The article describes the conducted simulations of changing temperatures in individual zones of the exemplary building and its energy demand for the needs of ventilation, heating and air conditioning related to the forecasted changes in external temperatures. The obtained results show decreasing energy demand for heating and its increasing demand for cooling. This is particularly important for designers, both architects and constructors and installers, who will have to face changing climatic conditions in their projects.
PL
Obserwowane obecnie ocieplenie klimatu powoduje, ze zmienia się zapotrzebowanie budynków na energię oraz komfort ich użytkowników. Wiąże się to z koniecznością modyfikacji systemów instalacji cieplnych i stosowania systemów klimatyzacji. W artykule opisano przeprowadzone symulacje zmieniających się temperatur w poszczególnych strefach przykładowego budynku oraz jego zapotrzebowania na energię na potrzeby wentylacji, ogrzewania i klimatyzacji związanych z prognozowanymi zmianami temperatur zewnętrznych. Uzyskane wyniki pokazują zmniejszające się zapotrzebowanie energii na ogrzewanie oraz jej rosnące zapotrzebowanie na chłodzenie. Jest to szczególnie istotne dla projektantów, zarówno architektów i konstruktorów, jak i instalatorów, którzy będą musieli zmierzyć się w swoich projektach ze zmieniającymi się warunkami klimatycznymi.
PL
Sama wymiana starych kotłów węglowych na nowe kotły 5 klasy może przyczynić się do wzrostu kosztów użytkowania budynków. Zwiększy to skalę ubóstwa energetycznego i spowoduje, że oczekiwane efekty programu „Czyste Powietrze” (redukcja emisji zanieczyszczeń) będą nietrwałe - właściciele powrócą do wykorzystywania taniego paliwa. W stosunku do samej wymiany kotła lub ocieplenia przegród kompleksowa termomodernizacja pozwala na największą redukcję emisji zanieczyszczeń - w analizowanych przypadku o 95% dla pyłów, o 98% dla B(a)P, o 80% dla SO2, o 43% dla NOx, o 97% dla CO i o 72% dla CO2 oraz uzyskanie największych oszczędności - 3,3 tys. zł rocznie w analizowanym przypadku.
EN
The replacement of old coal boilers with new class 5 boilers may increase in the cost of building use. This will increase the scale of energy poverty and cause that the expected effects of the Clean Air Programme (reduction of pollutant emissions) will be impermanent - the owners will return to using cheap fuel. In relation to the boiler replacement or insulation of partitions only, comprehensive renovation allows for the highest reduction of pollutant emissions - in the analyzed case by 95% for dusts particles, by 98% for B(a)P, by 80% for SO2, by 43% for NOx, by 97% for CO and 72% for CO2 and obtaining the largest savings of 3,3 thousand PLN annually in the analyzed case.
PL
Przedmiotem artykułu jest analiza możliwych usprawnień projektu budynku wielorodzinnego pozwalających na spełnienie wymagań standardu niemal zeroenergetycznego (NZEB), które wejdą w życie w 2021 roku. W ramach analizy w programie Audytor OZC stworzono model 3D dziewięciokondygnacyjnego budynku mieszkalnego. Charakterystykę energetyczną budynku obliczono dla 18 lokalizacji w całej Polsce, reprezentujących różne warunki klimatyczne i źródła ciepła. Uzyskane wyniki pozwoliły sprawdzić, czy budynek spełnia wymagania NZEB (WT 2021) w odniesieniu do współczynnika zapotrzebowania na energię pierwotną (EP ≤ 65 kWh/(m2rok)). W miejscach, w których wskaźnik EP został przekroczony, zaproponowano ulepszenia dotyczące głównie systemów technicznych i wykorzystania OZE (kolektory słoneczne lub fotowoltaika). Rezultatem obliczeń jest „Przewodnik inwestora” pokazujący zalecane usprawnienia w zależności od źródła ciepła i lokalizacji w Polsce. Przedstawiono również stopień trudności spełnienia kryteriów NZEB. Wnioski z artykułu mogą być przydatne dla projektantów i inwestorów planujących budowę budynków wielorodzinnych po 2020 roku. Wyraźnie pokazują, jaki rodzaj konwencjonalnego i odnawialnego źródła ciepła, a także systemów, warto zastosować.
EN
The main objective of this paper is to propose possible improvements of an apartment building design allowing its adaptation to nearly zero-energy (NZEB) requirements, entering into force in the year 2021. Within the research the 3D model of the nine-storey, residential building was created with the help of Audytor OZC software. The energy performance of building was calculated for 18 locations in whole Poland representing different climate conditions and heat sources. The results obtained allowed to check if the building meets the NZEB requirements in regard to primary energy demand factor (EP ≤ 65 kWh/(m2rok)). In the locations where the EP factor was exceeded improvements were proposed including mainly building systems and the use of RES (solar collectors or photovoltaic) for the domestic hot water heating. As a result of the research “Investor’s Guide” was created, demonstrating the recommended solutions depending on the heat source and the location in Poland. The degree of difficulty in meeting the NZEB criteria was presented as well. The paper conclusions can be very useful for designers and investors planning to build multi-family buildings after 2020. They clearly show what kind of conventional and renewable heat source as well as systems to use.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.