Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Fusing fine-tuned deep features for recognizing different tympanic membranes
EN
Otitis media (OM) refers to a group of inflammatory diseases regarding the middle ear. Although there are a wide variety of disease types regarding OM, the most commonly seen disorders are acute otitis media (AOM), otitis media with effusion (OME) and chronic suppurative otitis media (CSOM). The examination of OM in the clinics is realized subjec-tively. This subjective examination is error-prone and leads to a limited variability among specialist. For these reasons, computer-aided systems are in demand. In this study, we focus on recognizing normal, AOM, CSOM, and earwax tympanic membrane (TM) conditions using fused fine-tuned deep features provided by pre-trained deep convolutional neural networks (DCNNs). These features are applied as the input to several networks, such as an artificial neural network (ANN), k-nearest neighbor (k NN), decision tree (DT) and support vector machine (SVM). Moreover, we release a new publicly available TM data set consisting of totally 956 otoscope images. As a result, the DCNNs yielded promising results. Especially, the most efficient results were provided by VGG-16 with an accuracy of 93.05 %. The fused fine-tuned deep features improved the overall classification success. Finally, the proposed model yielded promising results with an accuracy of 99.47 %, sensitivity of 99.35 %, and specificity of 99.77 % using the combination of the fused fine-tuned deep features and SVM model. Consequently, this study shows that fused fine-tuned deep features are rather useful in recognizing different TMs and these features can provide a fully automated model with high sensitivity.
EN
Lung cancer is a disease caused by the involuntary increase of cells in the lung tissue. Early detection of cancerous cells is of vital importance in the lungs providing oxygen to the human body and excretion of carbon dioxide in the body as a result of vital activities. In this study, the detection of lung cancers is realized using LeNet, AlexNet and VGG-16 deep learning models. The experiments were carried out on an open dataset composed of Computed Tomography (CT) images. In the experiment, convolutional neural networks (CNNs) were used for feature extraction and classification purposes. In order to increase the success rate of the classification, the image augmentation techniques, such as cutting, zooming, horizontal turning and filling, were applied to the dataset during the training of the models. Because of the outstanding success of AlexNet model, the features obtained from the last fully-connected layer of the model were separately applied as the input to linear regression (LR), linear discriminant analysis (LDA), decision tree (DT), support vector ma-chine (SVM), k -nearest neighbor (kNN) and softmax classifiers. A combination of AlexNet model and k NN classifier achieved the most efficient classification accuracy as 98.74 %. Then, the minimum redundancy maximum relevance (mRMR) feature selection method was applied to the deep feature set to choose the most efficient features. Consequently, the success rate was yielded as 99.51 % by reclassifying the dataset with the selected features and k NN model. The proposed model is consistent diagnosis model for lung cancer detection using chest CT images.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.