The paper discusses two-dimensional uniform cellular automata for image processing. A cellular automaton rule using von Neumann neighbothood is proposed for carrying out edge detection on binary images. The composition model and characterization of the state space of the rule are analyzed using a finite state machine, a state graph, a deterministic finite automaton, and a characteristic polynomial. The rule is extended to deal with 8-bit gray-scale images, and has been tested on a set of images. Our work shows that a cellular automata-based model for edge detection provides an optimum edge map non binary images, and is an average better that comparative edge operators for 8-bit gray-scale images.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.