We construct xo is an element of RN and a row-finite matrix T = {Ti,j(t)}i,j is an element of N of polynomials of one real variable t such that the Cauchy problem x(t) = Ttx(t), x{0) = xo in the Frechet space RN has no solutions. We also construct a row-finite matrix A = {Aij(t)}ij is an element of N of C°°(R) functions such that the Cauchy problem x{t) = Atx;(t), x(0) = xo in RN has no solutions for any xo infinity RN\ {0}. We provide some sufficient condition of solvability and unique solvability for linear ordinary differential equations x(t) = Ttx(t) with matrix elements Ti,j(t) analytically dependent on t.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.