This article presents a study on music genre classification based on music separation into harmonic and drum components. For this purpose, audio signal separation is executed to extend the overall vector of parameters by new descriptors extracted from harmonic and/or drum music content. The study is performed using the ISMIS database of music files represented by vectors of parameters containing music features. The Support Vector Machine (SVM) classifier and co-training method adapted for the standard SVM are involved in genre classification. Also, some additional experiments are performed using reduced feature vectors, which improved the overall result. Finally, results and conclusions drawn from the study are presented, and suggestions for further work are outlined.
This paper presents a comparison of different normalization methods applied to the set of feature vectors of music pieces. Test results show the influence of min-max and Zero-Mean normalization methods, employing different distance functions (Euclidean, Manhattan, Chebyshev, Minkowski) as a pre-processing for genre classification, on k-Nearest Neighbor (kNN) algorithm classification results.
PL
Artykuł przedstawia porównanie różnych metod normalizacji zastosowanych do zbioru wektorów cech utworów muzycznych. Wyniki testów prezentują wpływ zastosowania metod normalizacji min-max oraz Zero-Mean z użyciem różnych funkcji odległości (Euklidesowej, Manhattan, Czebyszewa, Minkowskiego) w procesie wstępnego przetwarzania w klasyfikacji gatunków muzycznych z wykorzystaniem algorytmu klasyfikacji k-Najbliższych Sąsiadów (kNN).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.