Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Risk analysis of personalized medical devices, such as prostheses, is a challenging task due to the complexity of technological and geometrical issues. The paper undertakes a process of risk analysis for upper limb prostheses for adult patients, individualized by 3D scanning and produced by additive manufacturing. The analysis was performed to systematize the process and its steps, as well as diagnose certain problems, in order to achieve future devices with correct fit and function, produced in as few iterations as possible. The Failure Mode and Effect Analysis of Process (PFMEA) method was used. In the results, main process risks were identified: the problems are mostly caused in stages, where operator’s decision or activity is to be performed, regarding socket length, offset and suitable lining. The main prevention activities were determined – human involvement in the decision process should be minimal and the intelligent models should be adjustable to as many patient cases as possible. In consequence, future steps for process optimization were determined – larger base of patient cases is necessary to acquire and study, to gather data for model and process improvement.
EN
The paper presents the experimental process of manufacturing individualized prosthetic sockets out of thermoplas‑ tic material, using an additive manufacturing technology of Fused Deposition Modelling. The patient was an adult male with an amputated forearm. His stump was 3D scanned using a low‑cost 3D scanner in a semi‑automated manner. Then, the anthropometric data was used for the creation of a model of a prosthetic socket, which was subsequently manufactured. Three different 3D printers were used, with three different materials (ABS, nylon and PC) and three different sets of process parameters. The paper contains the descriptions of the process, its results and opinions by the patient, leading to the selection of an optimal process course variant.
EN
Designing individualized medical devices requires the collection of anthropometric data from the patient. This can be done by using the 3D scanning process. Despite many advantages, it has significant drawbacks, limiting the suitability of its use for many types of medical devices. This paper presents the design of measuring station that allows increasing the quality of the anthropometric data obtained in the scanning process of human limbs. The accuracy and repeatability of the data obtained on the station was presented and compared to reference scans. Moreover, owing to the automation of certain activities in the scanning process, operating the device requires the operator to have much lower competencies and workload.
EN
The paper presents the design and manufacturing process of an individualized wrist orthosis. The patient’s upper limb was 3D scanned and the orthosis was designed using a CAD system. Each part of the orthosis consists of two different materials that fulfill different functions. By using the double-head Fused Deposition Modelling machine it was possible to produce these parts in a single process without the need for additional assembly operations. The orthosis has been tested for mutual fit of parts, strength and comfort of use.
EN
The pre-operative preparation of a surgeon is increasingly often extended to individual patient’s anatomical models depicting the affected organ and the existing lesion in relation to the surrounding structures (e.g. blood vessels). Among the models, there are models of the skeletal system, in which the FFF technology is used. The models of parenchymal organs are more difficult to reproduce due to the material limitations in the FFF technology, which is why alternative technologies such as PolyJet and SLA are used. Due to the high price of models, they are employed less frequently, especially in the Polish hospitals. The research presented in the article deals with the modification of the existing methodology of rapid pre-operative models production with the use of various low-budget rapid manufacturing techniques, which use materials of low hardness, similar to the human soft tissues. The aim was to create a methodology and determine the parameters of materials that allow for the cheap production of functional pre-operational aids.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.