Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Grazing management strategies in arid ecosystems are of critical importance to regulate plant regeneration, improve forage quality, and ensure sustainable utilization of rangelands. This study examined the impacts of controlled grazing management on vegetation dynamics (gain/loss) and land cover changes over a 17-year period (2006–2022) at the Royal Botanic Garden, Jordan. Climatic factors, including precipitation and temperature, were analyzed alongside the Normalized Difference Vegetation Index (NDVI) to assess vegetation health and greenness. Autoregression models were used to investigate annual temporal trends between vegetation biodiversity indices and climatic factors. To assess the impact of controlled grazing on vegetation biodiversity, the study period was divided into four periods: the initial period (period 0: 2006–2007) which represented the pre-dating-controlled grazing period, followed by three subsequent periods: period 1 (2008–2012), period 2 (2013–2017), and period 3 (2018–2022). Land cover analysis using yearly averaged NDVI values was assessed, including five distinct classes: water body, barren soil, herbaceous and shrub, open forest, and closed forest. The study identified short-term changes during period 1 and long-term changes during periods 2 and 3. The results revealed a significant annual temporal trend only in NDVI (P<0.001), indicating dynamic changes in vegetation health over the whole study period. A positive influence of controlled grazing on vegetation dynamics and biomass production was observed. During period 3, controlled grazing has led to a significant (P<0.05) increase in vegetation biomass compared to earlier periods (214.4 ton in period 3 compared to 97.1 and 106.8 ton in periods 1 and 2, respectively). NDVI also showed significantly higher values during the later periods of controlled grazing, emphasizing its positive impact on long-term vegetation health. Furthermore, the study showed interesting trends in plant groups and species, with short-term controlled grazing leading to increased species richness and significant changes in vegetation indices. Over the study period, controlled grazing influenced land cover dynamics, with significant decreases in barren soil (from 66.7% to 9.8%) and increases in herbaceous and shrubland areas (33.2% to 89.6%). The study concluded that controlled grazing significantly shapes plant communities, fostering dynamic changes in species and groups over time. The study provides valuable insights into the ecological impact of controlled grazing management. The obtained f indings revealed vegetation resilience to short-term climate variations, with sustained vegetation health under grazing. Grazing management strategies in arid ecosystems are of critical importance to regulate plant regeneration, improve forage quality, and ensure sustainable utilization of rangelands. This study examined the impacts of controlled grazing management on vegetation dynamics (gain/loss) and land cover changes over a 17-year period (2006–2022) at the Royal Botanic Garden, Jordan. Climatic factors, including precipitation and temperature, were analyzed alongside the Normalized Difference Vegetation Index (NDVI) to assess vegetation health and greenness. Autoregression models were used to investigate annual temporal trends between vegetation biodiversity indices and climatic factors. To assess the impact of controlled grazing on vegetation biodiversity, the study period was divided into four periods: the initial period (period 0: 2006–2007) which represented the pre-dating-controlled grazing period, followed by three subsequent periods: period 1 (2008–2012), period 2 (2013–2017), and period 3 (2018–2022). Land cover analysis using yearly averaged NDVI values was assessed, including five distinct classes: water body, barren soil, herbaceous and shrub, open forest, and closed forest. The study identified short-term changes during period 1 and long-term changes during periods 2 and 3. The results revealed a significant annual temporal trend only in NDVI (P<0.001), indicating dynamic changes in vegetation health over the whole study period. A positive influence of controlled grazing on vegetation dynamics and biomass production was observed. During period 3, controlled grazing has led to a significant (P<0.05) increase in vegetation biomass compared to earlier periods (214.4 ton in period 3 compared to 97.1 and 106.8 ton in periods 1 and 2, respectively). NDVI also showed significantly higher values during the later periods of controlled grazing, emphasizing its positive impact on long-term vegetation health. Furthermore, the study showed interesting trends in plant groups and species, with short-term controlled grazing leading to increased species richness and significant changes in vegetation indices. Over the study period, controlled grazing influenced land cover dynamics, with significant decreases in barren soil (from 66.7% to 9.8%) and increases in herbaceous and shrubland areas (33.2% to 89.6%). The study concluded that controlled grazing significantly shapes plant communities, fostering dynamic changes in species and groups over time. The study provides valuable insights into the ecological impact of controlled grazing management. The obtained f indings revealed vegetation resilience to short-term climate variations, with sustained vegetation health under grazing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.