Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this article, the potential use of banana bunch waste (BBW) as a source of bioenergy through hydrothermal carbonization (HTC) was investigated. BBW, a byproduct of banana production, is difficult to use as a fuel due to its low density and carbon ratio. However, its high lignocellulose content indicates its potential as a bioenergy source. To determine the optimal HTC conditions, an experiment was conducted using temperature, water to feedstock ratio, and processing time, with the RSM Box-Behnken method used to produce 15 trial formulations. Energy value and mass yield data were collected to determine the optimal values for both. The main parameter affecting energy yield was found to be the water to feedstock ratio, and the optimal conditions were determined to be a temperature of 180 °C, a water to feedstock ratio of 1.5:1, and a processing time of 15 minutes. The highest energy yield of 99.7% was observed under these conditions, while the lowest mass yield of 25.30% was observed at a temperature of 200°C with a water ratio of 2 and a time of 15 minutes. The heating value of the HTC solid product ranges from 17–27 MJ/kg, which is comparable to low-grade sub-bituminous coal, indicating potential for co-firing with coal and other hydrothermal products as a fuel.
EN
Using the Hydrothermal process to reduce the volume of the Municipal Solid Waste (MSW) which is mostly organic component and to utilize the solid powder resulted as coal-like solid fuel will contribute not only to solving the MSW problem but also reducing the coal consumption in the power plant. In this study, the hydrothermal processes were conducted using a laboratory scale apparatus with MSW components as the samples. The process parameters comprised temperature, solid load, and holding time. Four components were used as representative of organics and plastics in the municipal solid waste. In this study, the experiments were done performed at various temperatures, 180 °C, 200 °C, and 220 °C inside an experimental autoclave. The results of the experiments show that the process time, the water amount and the temperature which are used in hydrothermal process, affect the proximate and ultimate compositions. The moisture and fixed carbon content decrease and the volatile matter increases, so that the calorific value of MSW increases. On the basis of the experiments, the optimum hydrothermal process parameters are feed to water ratio of 1/1 (250 g/250 ml), temperature of 180 °C, and holding time of 90 min. It also can be concluded that the hydrothermal process can be applied to MSW to produce solid fuel.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.