This article aims at presenting research on the sorption of carbon dioxide on shales, which will allow to estimate the possibility of CO2 injection into gas shales. It has been established that the adsorption of carbon dioxide for a given sample of sorbent is always greater than that of methane. Moreover, carbon dioxide is the preferred gas if adsorption takes place in the presence of both gases. In this study CO2 sorption experiments were performed on high pressure setup and experimental data were fitted into the Ambrose four components models in order to calculate the total gas capacity of shales as potential CO2 reservoirs. Other data necessary for the calculation have been identified: total organic content, porosity, temperature and moisture content. It was noticed that clay minerals also have an impact on the sorption capacity as the sample with lowest TOC has the highest total clay mineral content and its sorption capacity slightly exceeds the one with higher TOC and lower clay content. There is a positive relationship between the total content of organic matter and the stored volume, and the porosity of the material and the stored volume.
Mercury is ranked third on the Substance Priority List, an index of substances determined to pose the most significant potential threat to human health compiled by the Agency for Toxic Substances and Disease Registry. This element is activated with the extraction of hard coal and accumulated in the natural environment or re-emitted from the waste deposited on dumping grounds. So far, studies on mercury content have focused on the analysis of the dumps surface and the adjacent areas. In this paper, the detection of mercury content inside mining waste dumping grounds was analysed. The recognition of mercury content in the profile of the mining waste dump is important in terms of the dismantling of the facility. The dismantling may pose a risk of environmental pollution with mercury due to the possibility of increased fire risk, re-emission, and the transfer of xenobiotics to another place. In this paper, the study of mercury content in the mining waste dump profile was presented. The research demonstrated that there is no significant relationship between the mercury content and the sampling depth. The mercury content in the mining waste was determined based on the rank and origin of hard coal only. Therefore, intensive efforts should be undertaken to identify the environmental hazards arising from the dismantling of mining waste dumps and to adopt measures to prevent these hazards.
Vietnam has the 13th largest hard coal reserves globally, with the reserves totaling 2.22 billion tonnes, and estimated resources of 4.07 billion tonnes. Coal use is playing an increasing role in the energy mix and according to current planning, this role is to increase further. In parallel with the development of the Vietnamese coal sector, underground mining also underwent many stages of improvements, especially in the last two decades. This paper analyzes the achievement and the state of the mining technology applied into the underground mining by the Vietnam National Coal - Mineral Industries Holding Corporation Ltd. (VINACOMIN) during 20 year period and proposes the recommendations for the sustainable development of Vietnam underground mining.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.