We study the existence of mild solutions and the approximate controllability concept for Sobolev type fractional semilinear stochastic evolution equations in Hilbert spaces. We prove existence of a mild solution and give sufficient conditions for the approximate controllability. In particular, we prove that the fractional linear stochastic system is approximately controllable in [0, b] if and only if the corresponding deterministic fractional linear system is approximately controllable in every [s, b], 0 ≤ s < b. An example is provided to illustrate the application of the obtained results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.