Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Self-Verifying Pushdown and Queue Automata
EN
We study the computational and descriptional complexity of self-verifying pushdown automata (SVPDA) and self-verifying realtime queue automata (SVRQA). A self-verifying automaton is a nondeterministic device whose nondeterminism is symmetric in the following sense. Each computation path can give one of the answers yes, no, or do not know. For every input word, at least one computation path must give either the answer yes or no, and the answers given must not be contradictory. We show that SVPDA and SVRQA are automata characterizations of so-called complementation kernels, that is, context-free or realtime nondeterministic queue automaton languages whose complement is also context free or accepted by a realtime nondeterministic queue automaton. So, the families of languages accepted by SVPDA and SVRQA are strictly between the families of deterministic and nondeterministic languages. Closure properties and various decidability problems are considered. For example, it is shown that it is not semidecidable whether a given SVPDA or SVRQA can be made self-verifying. Moreover, we study descriptional complexity aspects of these machines. It turns out that the size trade-offs between nondeterministic and self-verifying as well as between self-verifying and deterministic automata are non-recursive. That is, one can choose an arbitrarily large recursive function f, but the gain in economy of description eventually exceeds f when changing from the former system to the latter.
2
Content available remote Improved Descriptional Complexity Results for Simple Semi-Conditional Grammars
EN
A simple semi-conditional (SSC) grammar is a form of regulated rewriting system where the derivations are controlled either by a permitting string alone or by a forbidden string alone and this condition is specified in the rule. The maximum length i (j, resp.) of the permitting (forbidden, resp.) strings serves as a measure of descriptional complexity known as the degree of such grammars. In addition to the degree, the numbers of nonterminals and of conditional rules are also counted into the descriptional complexity measures of these grammars. We improve on some previously obtained results on the computational completeness of SSC grammars by minimizing the number of nonterminals and / or the number of conditional rules for a given degree (i, j). More specifically we prove, using a refined analysis of a normal form for type-0 grammars due to Geffert, that every recursively enumerable language is generated by an SSC grammar of (i) degree (2, 1) with eight conditional rules and nine nonterminals, (ii) degree (3, 1) with seven conditional rules and seven nonterminals (iii) degree (4, 1) with six conditional rules and seven nonterminals and (iv) degree (4, 1) with eight conditional rules and six nonterminals.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.