Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The transformation during wave propagation is significantly important for the calculations of hydraulic and coastal engineering, as well as the sediment transport. The exact wave height deformation calculation on the coasts is essential to near-shore hydrodynamics research and the structure design of coastal engineering. According to the wave shoaling results gained from the elliptical cosine wave theory, the nonlinear wave dispersion relation is adopted to develop the expression of the corresponding nonlinear wave shoaling coefficient. Based on the extended elliptic mild slope equation, an efficient wave numerical model is presented in this paper for predicting wave deformation across the complex topography and the surf zone, incorporating the nonlinear wave dispersion relation, the nonlinear wave shoaling coefficient and other energy dissipation factors. Especially, the phenomenon of wave recovery and second breaking could be shown by the present model. The classical Berkhoff single elliptic topography wave tests, the sinusoidal varying topography experiment, and complex composite slopes wave flume experiments are applied to verify the accuracy of the calculation of wave heights. Compared with experimental data, good agreements are found upon single elliptical topography and one-dimensional beach profiles, including uniform slope and step-type profiles. The results indicate that the newly-developed nonlinear wave shoaling coefficient improves the calculated accuracy of wave transformation in the surf zone efficiently, and the wave breaking is the key factor affecting the wave characteristics and need to be considered in the nearshore wave simulations.
EN
An improved ion-pairing reversed-phase high-performance liquid chromatography method coupled with evaporative light scattering detection (HPLC-ELSD) was developed to determine spectinomycin and its related substances in commercial samples. The method was validated in accordance with International Conference on Harmonization (ICH) guidelines. The specificity of the HPLC-ELSD method was similar to that of the European Pharmacopoeia (Ph. Eur.) method, and repeatability and robustness were markedly improved relative to other reported methods due to our empirical evaluation of separation columns. Indeed, it is a more specific assay of spectinomycin than traditional microbiological techniques. The HPLC-ELSD method was used to evaluate the impurity profiles of eight compounds in seven spectinomycin batches from five different companies. Liquid chromatography coupled with electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was employed to characterize the structures of these compounds. Though the HPLC-ELSD method was not as sensitive as the Ph. Eur. method, its limit of quantitation (LOQ) (0.16%) was lower than the disregard limit (0.3%) described by the Ph. Eur. 7.0. This suggests that the HPLC-ELSD method is appropriate for routine analysis of spectinomycin and its related substances.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.