Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 43

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
PL
W celu zagwarantowania niezakłóconego funkcjonowania całego systemu kanalizacji grawitacyjnej w budynkach, projektuje się i wykonuje układy napowietrzania na podstawie obowiązujących norm i przepisów. Najpowszechniejszym, a zarazem najbardziej efektywnym sposobem jest montaż rur wywiewnych pionów kanalizacyjnych. Innym sposobem napowietrzania układów kanalizacji wewnętrznej jest stosowanie zaworów napowietrzających, które działają na zasadzie zaworu zwrotnego umożliwiając zassanie powietrza z pomieszczeń do układu kanalizacyjnego po pojawieniu się w nim podciśnienia, blokując jednocześnie możliwość przedostawania się gazów złowonnych z układu do pomieszczeń. Praktyka wskazuje, że blokada ta nie zawsze jest w pełni skuteczna. Nowe trendy pojawiające się w budownictwie energooszczędnym i pasywnym skłaniają inwestorów do rezygnacji z montażu rur wywiewnych – podyktowane jest to głównie potrzebą minimalizacji strat ciepła przez budynek. Jest to działanie błędne, prowadzące w efekcie do problemów eksploatacyjnych układów kanalizacji wewnętrznej, przyczyniające się do pojawiania się podciśnienia, nieprawidłowego funkcjonowania zamknięć wodnych i rozprzestrzeniania się odorów. Autorzy niniejszego opracowania proponują koncepcyjne rozwiązanie alternatywne, polegające na zastąpieniu rury wywiewnej przy połaci dachowej rurą wywiewną zamontowaną na przyłączu instalacji kanalizacyjnej, zaś zakończenie pionu kanalizacyjnego hermetycznym zbiornikiem, którego zadaniem jest magazynowanie powietrza potrzebnego do napowietrzania układów. Zapas powietrza w układzie pozwala na ograniczenie powstawania w nim podciśnienia co prowadzi do minimalizacji nieprawidłowości pracy instalacji kanalizacyjnej.
EN
Internal sewage in the building works properly if there is atmospheric pressure in all drain lines. Any disturbance of this balance may cause incorrect operation of the entire sewerage system in the building. In order to guarantee the smooth functioning of the entire gravitational drainage system in buildings, aeration systems are designed and implemented on the basis of applicable standards and regulations. The most common and the most effective method is the assembly of exhaust pipes. Another method of aeration of internal sewage systems are vacuum valves, which operate on the principle of a non-return valve, allowing internal air to be sucked into the sewage system after the vacuum appears, while blocking the possibility of air from the system entering the internal air. New trends appearing in energy-saving and passive construction encourage investors to abandon the assembly of exhaust pipes – this is dictated primarily by the need to minimize heat losses through the building. This is an erroneous operation, resulting in operational problems of internal sewage systems, occurrence of underpressure, which results in the spread of odorous gases into the indoor air. The authors of this study propose an alternative solution consisting in replacing the exhaust pipe at the roof slope with the exhaust pipe mounted on the sewage system connection, and ending the sewerage section with a hermetic tank, whose task is to store the air needed to ventilate the systems. The presence of reserve air in the system allows to minimize irregularities in the operation of the sewage system by minimizing the phenomenon of underpressure.
EN
The article presents the laboratory examinations of the basic physical parameters of gravelite-concrete modified by municipal sewage sludge and gravelite-concrete, obtained of light aggregates, commonly applied in Polish building market. To decrease water absorptivity of the concrete blocks, the admixture of water emulsion of reactive polisiloxanes was applied. For the presented blocks, capillary rise process was monitored together with moisture influence on heat conductivity coefficient λ determined using TDR probes and plate apparatus. Analysis of heat-moisture properties of concrete confirmed usefulness of gravelite with sewage sludge addition for further production.
PL
Produkcja ekologicznych i energooszczędnych materiałów budowlanych staje się powszechną technologią poprawy efektywności energetycznej budynków zgodnie z przepisami dyrektywy UE 2006/32/WE3. Jednym z materiałów stosowanym w budownictwie energooszczędnym ze względu na swoje właściwości cieplno-wilgotnościowe jest keramzytobeton. Do otrzymywania keramzytobetonu coraz częściej stosuje się kruszywa lekkie modyfikowane komunalnym osadem ściekowym. Osady ściekowe stwarzają zagrożenie dla zdrowia ludzi i środowiska naturalnego, dlatego też muszą być poddawane odpowiedniej przeróbce. Jedną z metod ich utylizacji jest zagospodarowanie do produkcji energooszczędnych bloczków keramzytobetonowych. Często jednak charakteryzują się one wysoką nasiąkliwością, co powoduje transport wody podciąganej kapilarnie. Wpływa to w istotny sposób na proces przepływu ciepła, tym samym zwiększając kilkukrotnie przewodnictwo cieplne materiałów. Artykuł przedstawia badania podstawowych cech fizycznych keramzytobetonu modyfikowanego komunalnym osadem ściekowym oraz keramzytobetonu uzyskanego z kruszywa lekkiego powszechnie stosowanego na rynku. W celu obniżenia nasiąkliwości betonów jako domieszkę zastosowano wodną emulsję reaktywnych polisiloksanów. Dodatkowo wykonano pomiary podciągania kapilarnego oraz jego wpływu na współczynnik przewodzenia ciepła λ w próbkach modelowych przy wykorzystaniu sond TDR i aparatu płytowego. Analiza cech cieplno-wilgotnościowych betonów potwierdziła przydatność keramzytu z dodatkiem osadu ściekowego do ich produkcji.
3
Content available remote Suitability of combined sewers for the installation of heat exchangers
EN
The present paper deals with the classification of the suitability of combined sewers for the installation of heat exchangers and with assessment of the theoretical potential of wastewater in the sewer system for heating of buildings. A classification scheme involving criteria like theoretically available heat, sewer diameter, number of the heat exchanger parallel modules in the sewer cross-section, hydraulic conditions (hydraulic capacity of the sewer, pressurized flow), and potential fouling by biofilm growth was developed. First, individual sewers in the pilot catchment were assessed based on monitoring the flow characteristics and wastewater temperatures and on pipe flow modelling. Second, connectivity of the suitable and partly suitable sewers was examined with respect to the length necessary for the installation of the heat exchanger with the minimum required power of 100 kW. For the continuous sewer sections, the maximum potential power was calculated. The presented approach is generally applicable, however, for other heat exchanger types and other climatic and economic conditions, values of the suitability criteria for the heat exchanger installation must be adapted.
EN
This paper presents results of the studies of ciliate assemblage in benthos of lowland river influenced by sewage discharged from the municipal wastewater treatment plant. During the presented research the 47 ciliate species, including 45 species from the benthos of the river and 18 from the activated sludge of aeration chamber were identified. Only two species registered in the activated sludge were not observed in the river. Against the background of the lowest number of species in the point located in the distance of 50 m below the discharge of sewage the maximum amount and biomass of these species were observed. Whereas, 200 m below the discharge the decrease in number and biomass of ciliate to the level noted for location before the discharge was observed. Thus, generalizing, one may state that influence of municipal WWTP sewage discharge for ciliate assemblage in the river’s benthos was clearly visible but local.
EN
The aim of the research presented in the paper was to evaluate the feasibility of using hydrophobic preparations based on organosilicon compounds for protection treatment of lightweight aggregates modified with municipal sewage sludge. Issues related to the wettability of the surface layer of hydrophobised lightweight-aggregate concrete supplemented with sewage sludge are discussed in the paper. The experimental part of the study is focused on the physical and mechanical characteristics of lightweight-aggregate concrete and the effect of two hydrophobic preparations on the contact angle of the material. The contact angle for lightweight concrete (θw) was determined as a function of time using one measurement liquid. The hydrophobic coatings in the structure of lightweight concrete modified with sewage sludge were shown using electron microscopy. The investigations demonstrated the effectiveness of hydrophobisation of porous lightweight concretes. On the hydrophobic surfaces, the contact angles decreased with time and depended on the preparations used. The results of the research confirm the possibility to produce lightweight aggregate-concretes modified with sewage sludge with appropriate surface protection against external moisture.
PL
Celem badań przedstawionych w pracy była ocena efektu zastosowania preparatów hydrofobowych opartych o substancje krzemoorganiczne do zabezpieczania lekkich bloczków keramzytowych z dodatkiem osadów ściekowych przed wilgocią. W artykule omówiono zagadnienia związane ze zwilżalnością warstwy wierzchniej hydrofobizowanego keramzytobetonu modyfikowanego osadem ściekowym. Część doświadczalna pracy dotyczy cech fizycznych i mechanicznych keramzytobetonu oraz wpływu dwóch preparatów hydrofobowych na kąt zwilżania materiału. Wyznaczono kąt zwilżania betonu lekkiego (θw) w funkcji czasu przy użyciu jednej cieczy pomiarowej. Przedstawiono powłoki hydrofobowe w strukturze betonu lekkiego z osadem przy użyciu mikroskopii elektronowej. Na podstawie badań określono skuteczność hydrofobizacji porowatych betonów lekkich. Dla użytych substancji hydrofobizujących kąty zwilżania zmniejszały się z upływem czasu, a zmiana zależała od zastosowanych preparatów. Wyniki przeprowadzonych badań potwierdziły możliwość poprawy parametrów betonów lekkich wraz z odpowiednim zabezpieczeniem powierzchniowym przed wilgocią z zewnątrz.
EN
Capillary rise phenomenon is a process threatening many building objects. It is mainly caused by the capillary structure of most building materials. The described phenomenon relies on water flow against gravity forces and hydrostatic pressure. The problem of capillary uptake is especially visible in case of lack of horizontal or vertical water isolation layers, their damage or natural wear during long time exploitation. The sufficient condition for capillary rise phenomenon appearance is constant contact of the building barriers to the moist ground. Described phenomenon is dangerous because the range of its influence can reach even 2.5 m or more above ground level, depending on building material. Capillary uptake is a dangerous process, because it runs to barriers destruction and decrease of its strength and heat parameters. Excessive water is the reason of biological strokes of the buildings, mainly caused by mould. The article presents the experimental research of capillary rise phenomenon in a sample of autoclaved calcium silicate. For the experiment it is applied the setup of TDR sensors prototypes which enable constant monitoring of the described phenomenon in non-invasive way.
PL
Podciąganie kapilarne jest procesem dotykającym wiele obiektów budowlanych. Przyczyną jego występowania jest kapilarna struktura większości materiałów budowlanych. Zjawisko to polega na przepływie wody w kierunku niezgodnym z siłami grawitacji, wbrew ciśnieniu hydrostatycznemu. Omawiany problem podciągania kapilarnego jest szczególnie widoczny w przypadku braku poziomych i pionowych izolacji przeciwwilgociowych, ich uszkodzenia lub przy naturalnym ich zużyciu w czasie wieloletniej eksploatacji. Warunkiem wystarczającym do rozpoczęcia procesu podciągania kapilarnego wody do wyższych partii ścian jest styczność przegród budowlanych z gruntem o naturalnej wilgotności. Zjawisko to jest niezwykle niebezpieczne, ponieważ zasięg jego oddziaływania może osiągać nawet wysokość do 2,5 m od poziomu gruntu lub więcej w zależności od materiału budowlanego. Podciąganie kapilarne jest procesem szkodliwym, ponieważ prowadzi do degradacji przegrody, obniża jej właściwości konstrukcyjne oraz cieplne. Nadmierna ilość wody w przegrodzie jest przyczyną porażeń biologicznych budynków, z których najczęściej spotykanym problemem jest zagrzybienie. W artykule przedstawiono badania eksperymentalne procesu podciągania kapilarnego w próbce z autoklawizowanego silikatu wapiennego. Do badań zastosowano zestaw prototypowych czujników TDR, dzięki którym możliwy jest ciągły monitoring zjawiska w sposób bezinwazyjny.
7
EN
The article presents information about moisture protection of building materials. The discussed parameters determining the efficiency of the water protection are material porosity, water absorptivity and surface condition of building materials. Moreover the ecological aspect of hydrophobic VOC-free preparations available on the market has been underlined. The first part of the article is a description of moisture problem in the building envelopes and the possibilities of its prevention. The special attention is put on the electric methods of moisture estimation with a special emphasis on the Time Domain Reflectometry (TDR) method. The second part of the article is devoted an experiment of model red-brick walls exhibited on capillary uptake process. For the experiment three model red-brick walls were built and prepared for water uptake process. The experiment was monitored by the capacitive and surface TDR probes thanks to which the necessity of sampling and material destruction could be avoided. Conducted experiments show the progress of water uptake phenomenon in the model walls which differ in type of protection against moisture and prove the potential of the non-invasive measurements using the surface TDR probes. Basic physical parameters of the applied bricks were determined together with the reflectometric measurements. Furthermore, Scanning Electron Microscopy (SEM) was used to analyze the hydrophobic layer continuity.
PL
W artykule przedstawiono parametry materiałów budowlanych, które wpływają na skuteczność stosowania preparatów hydrofobowych. Należą do nich porowatość, nasiąkliwość i stan powierzchni. Podkreślono również ekologiczne aspekty stosowania dostępnych na rynku budowlanym hydrofobowych preparatów wolnych od lotnych związków organicznych. Pierwsza część pracy jest omówieniem problemów wilgotnościowych w przegrodach budowlanych. Duży nacisk położono na elektryczne techniki detekcji wilgoci ze szczególnym uwzględnieniem metody TDR. Druga część ma charakter eksperymentalny. W celu zbadania zjawiska podciągania kapilarnego przygotowano trzy modelowe ścianki z cegły ceramicznej pełnej. Omawiany proces był monitorowany za pomocą czujników pojemnościowych oraz powierzchniowych sond TDR. Uzyskane wyniki pozwalają na śledzenie procesu podciągania kapilarnego w modelowych ściankach z cegły ceramicznej różniących się od siebie rodzajem zastosowanego preparatu hydrofobowego i potwierdzają możliwości sondy powierzchniowej TDR w pomiarach wilgotnościowych murów. Równolegle do badań za pomocą technik elektrycznych wyznaczono podstawowe parametry fizyczne cegły wykorzystanej do wymurowania ścianek, wykonano również zdjęcia za pomocą skaningowego mikroskopu elektronowego (SEM) w celu przeanalizowania ciągłości warstwy hydrofobowej.
EN
The article presents the description of measurement methodology of moisture transport in unsaturated porous materials using Time Domain Reflectometry (TDR) technique on the example of measurement of capillary uptake phenomenon in the sample of autoclaved aerated concrete (AAC). In the paper there are presented basic principles of the TDR method as a technique applied in metrology, its potential for measurement of moisture in porous materials like soils and porous building materials. Second part of the article presents the experiment of capillary rise process in the sample of AAC. Within the experiment moisture content was monitored in the sample exposed on water influence. Monitoring was conducted using TDR FP/mts probes. Preparation of the measuring setup was presented in detail. The TDR readouts post-processing, graphical presentations of the obtained results, short discussion and comparison of TDR readouts to gravimetric measurement were also presented.
PL
W artykule przedstawiono opis metodyki pomiaru transportu wilgoci w nienasyconych porowatych materiałach przy wykorzystaniu techniki Time Domain Reflectometry (TDR) na przykładzie pomiarów zjawiska podciągania kapilarnego przez próbkę autoklawizowanego betonu komórkowego. Zaprezentowano podstawowe informacje na temat metody TDR jako techniki stosowanej w metrologii. Omówiono jej potencjał do pomiarów wilgoci w takich ośrodkach porowatych, jak gleby i porowate materiały budowlane. Druga część artykułu przedstawia eksperyment podciągania kapilarnego przez próbkę autoklawizowanego betonu komórkowego. W trakcie trwania eksperymentu monitorowano zmiany wilgotności w próbce wystawionej na oddziaływaniewody. Monitoring realizowano za pomocą sond TDR FP/mts. Rozdział „Materials and Methods” przedstawia szczegółowo przygotowanie stanowiska pomiarowego. W rozdziale „Results” podano odczyty miernika TDR przeliczone na wilgotność oraz zaprezentowano uzyskane wyniki w postaci graficznej. Zawarto w nim również krótką dyskusję wyników i porównanie odczytów TDR z pomiarami grawimetrycznymi.
EN
The article presents the non-invasive attempt to moisture determination using the electric methods. The first part of the article describes the problem of moisture in the building barriers and the possibilities of its determination. The special attention is put on the electric methods of moisture determination. Second part of paper is experimental. For the experiment a model red-brick wall was built and prepared for water uptake process. The experiment was monitored by the capacitance and surface TDR probes which enabled to avoid the necessity of sampling or material destruction. Conducted experiments show the progress of water uptake phenomenon in the model wall and prove the potential of the non-invasive measurements using the surface TDR probes.
PL
Artykuł przedstawia bezinwazyjny sposób pomiaru wilgotności z wykorzystaniem metod elektrycznych. W pierwszej części artykułu omówiono problem nadmiernego zawilgocenia przegród budowlanych i sposoby pomiaru tego zjawiska. Druga część pracy ma charakter eksperymentalny. Przygotowano modelową ściankę z cegły ceramicznej pełnej w celu zbadania zjawiska podciągania kapilarnego. Omawiany proces był monitorowany za pomocą czujników pojemnościowych oraz powierzchniowych sond TDR, co umożliwiło bezinwazyjne pomiary, niewymagające pobrania fragmentów muru lub innych ingerencji w badany materiał. Uzyskane wyniki pozwalają na śledzenie procesu podciągania kapilarnego w modelowej ściance z cegły ceramicznej pełnej i potwierdzają możliwości sondy powierzchniowej TDR w pomiarach wilgotnościowych murów.
PL
W artykule omówiono możliwości pomiarowe techniki TDR (Time Domain Reflectometry) pod kątem terenowych pomiarów wilgotności murów w budynkach zabytkowych. Do pomiarów wykorzystano zmodyfikowaną sondę powierzchniową umożliwiającą bezinwazyjny pomiar wilgotności materiałów budowlanych, dzięki czemu możliwe jest prowadzenie badań in-situ, zwłaszcza na obiektach zabytkowych. Badania polowe wykonano na murze zewnętrznym z cegły ceramicznej pełnej, będącym częścią zabytkowego szpitala zlokalizowanego na terenie Wojewódzkiego Samodzielnego Psychiatrycznego Zespołu Publicznych Zakładów Opieki Zdrowotnej im. prof. dr Jana Mazurkiewicza w Pruszkowie. Mur dotknięty jest zjawiskiem podciągania kapilarnego przez wody pochodzące z gruntu, co jest możliwe do oceny nawet w drodze obserwacji wizualnej. Przeprowadzone badania umożliwiły ilościową ocenę zjawiska, którym dotknięty jest omawiany obiekt. W ramach przeprowadzonych badań wykonano pomiary reflektometryczne za pomocą prototypowych sond TDR. Badania powtórzono w celu wykazania zmian wilgotności muru w czasie. Pierwszą serię pomiarów przeprowadzono w okresie letnim – lipcu 2010 roku, natomiast druga seria pomiarowa zrealizowana została w miesiącu listopadzie tego samego roku. Następnie, na podstawie uzyskanych danych sporządzono mapy wilgotności muru, dzięki którym widoczne są zmiany wilgotności przegrody w pionie i poziomie, co w rezultacie umożliwia na stwierdzenie występowania zjawiska podciągania kapilarnego w badanym murze.
EN
Article discusses measuring potential of the TDR (Time Domain Reflectometry) technique for terrain measurement of moisture in the masonries of the historical buildings. For the measurements it was applied modified TDR probe which enables noninvasive moisture detection in building materials, thus enables its application for in-situ measurements, especially in old, historical objects. Terrain measurements were realized on the external masonry made of red ceramic brick, being the part of the historical hospital located on the area of the “Wojewódzki Samodzielny Psychiatryczny Zespół Publicznych Zakładów Opieki Zdrowotnej im. prof. dr Jana Mazurkiewicza” in Pruszków. The masonry is stricken with capillary rise phenomenon by the water coming from the ground, which is also visible by visual observation. Conducted measurement enabled quantitative estimation of the phenomenon which threatens to the discussed object. Within the research, reflectometric measurements were conducted using the prototype surface TDR probes. Measurements were repeated to verify moisture changes in time. First series of measurement was conducted in summertime, in July 2010. The second one was conducted in November of the same year. Then, with the obtained data there were drawn moisture maps of the masonry, which indicated horizontal and vertical variations of moisture and interpretation of the obtained results enabled to confirm capillary uptake process in the examined masonry.
EN
Problem of building barriers moisture is a well known phenomenon for almost all users of the buildings. Its presence is inevitable in moderate climate and its balanced states are acceptable. On the other hand, extended values of moisture are disadvantageous and may be caused by many factors like water vapor condensation inside the barriers, capillary rise of ground water, rainwater, inundations or sanitary systems failures. This phenomenon is also a factor which limits the object functionality both from the construction and sanitary-hygienic reasons. Extended moisture content problem is particularly visible in the historical buildings which were set up without the suitable horizontal water-proof isolations. In this cases, ground water has the unlimited access to the groundwork and then, due to the capillary forces to the internal parts of the walls. Increased amounts of water lead to the material structure destruction by melting and thawing processes during winter season, wood decay, and accelerated corrosion of steel reinforcement elements and crystallization of dissolved salts in transported water. Also it should be mentioned here, that indirectly, water negatively influences the indoor environment providing good conditions for harmful microorganisms and mould development which may consequently run to the respiratory system diseases, infections, allergies, eyes and skin irritations. All above presented negative consequences of water presence inside the building envelopes are the reason for constant development moisture detection techniques.
PL
Zjawisko zawilgocenia przegród budowlanych jest znane w zasadzie wszystkim użytkownikom obiektów budowlanych. Występowanie tego zjawiska jest praktycznie nie uniknione w warunkach klimatycznych w jakich znajduje się Polska. Jego zrównoważona obecność polegająca na ciągłym pochłanianiu wilgoci i jej odparowywaniu jest jak całkowicie akceptowalna. Szkodliwym jest natomiast zjawisko nadmiernej zawartości wilgoci, które może być wywołane wieloma czynnikami do których zaliczamy kondensację pary wodnej wewnątrz przegrody, podciąganie kapilarne wód gruntowych, wody rozbryzgowe z deszczy, wody powodziowe czy też awarie instalacji sanitarnych. Zjawisko powyższe jest niekorzystne z punktu widzenia budowli i jest czynnikiem ograniczającym funkcjonalność obiektu zarówno ze względów konstrukcyjnych, jak i higieniczno-sanitarnych. Problem nadmiernej zawartości wody w murach jest szczególnie widoczny w budynkach historycznych wznoszonych bez zastosowania właściwych izolacji poziomych. Wówczas woda gruntowa posiada nieograniczony dostęp do fundamentów budynku, a następnie przy udziale sił kapilarnych do wnętrza murów. Nadmierna ilość wody w zewnętrznych przegrodach budowlanych prowadzi do zniszczenia struktury materiału poprzez wielokrotne procesy zamarzania i rozmarzania w okresie zimowym, rozkład drewna, przyspieszoną korozja stalowych elementów zbrojeniowych oraz krystalizacja soli rozpuszczonych w transportowanej wodzie. Istotnym problemem jest również fakt, że woda pośrednio negatywnie oddziałuje na środowisko wewnętrzne pomieszczeń, przyczyniając się tym samym do rozwoju szkodliwych mikroorganizmów oraz grzybów pleśniowych. Może w konsekwencji przyczyniać się do chorób dróg oddechowych, infekcji, alergii oraz podrażnień oczu i skóry. Przedstawione powyżej negatywne skutki obecności wody w przegrodach budowlanych są podstawą do rozwoju i ciągłego opracowywania i udoskonalania technik detekcji wilgoci w przegrodach budowlanych. W niniejszym artykule przedstawiono możliwość przeprowadzenia badań in-situ przy zastosowaniu techniki pomiarowej TDR (Time Domain Reflectometry). Technika ta od wielu lat stosowana była do pomiarów wilgotności ośrodków gruntowych. Od początku XXI wieku trwały prace nad zastosowaniem techniki TDR do oceny zawilgocenia twardszych od gruntu materiałów i przegród budowlanych. Jednak inwazyjny charakter metody w większości przypadków uniemożliwiał jej praktyczne wykorzystanie lub był przyczyną wielu problemów technicznych. W ramach części badawczej artykułu przedstawiono pomiary wilgotności muru z cegły ceramicznej pełnej pokrytej warstwą tynku wapiennopiaskowego. Badany obiekt znajduje się na Lubelskiej starówce i jest to ściana bramy przy ul. Ku Farze. Jest to przegroda dotknięta zjawiskiem podciągania kapilarnego wynikającego z braku właściwych izolacji poziomych. Badania przeprowadzono w trzech terminach pomiarowych przy pomocy opracowanych na Politechnice Lubelskiej sond powierzchniowych TDR, umożliwiających bezinwazyjne pomiary wilgotności. W celu wykonania pomiarów, badaną przegrodę podzielono na charakterystyczne fragmenty tworzące siatkę pomiarową o określonych wymiarach. W trakcie eksperymentu w charakterystycznych punktach przegrody umieszczano czujnik i odczytywano parametry dielektryczne ośrodka, automatycznie przeliczając je na wilgotność objętościową. Wyniki przeprowadzonych badań naniesiono na siatkę pomiarów różnicując je kolorami w zależności od odczytanej wilgotności. Rezultatem powyższych zabiegów było uzyskanie tzw. map wilgotności przegrody budowlanej w trzech różnych terminach pomiarowych. Przedstawione w artykule mapy wilgotności potwierdzają fakt podwyższonej wilgotności przegrody i jednocześnie pozwalają na ukazanie jego rozkładu w pionie oraz poziomie. Przeprowadzone badania wyraźnie ukazują, że badana przegroda wykazuje nadmierną wilgotność w swych dolnych partiach, natomiast wyższe partie są nieco mniej wilgotne. Świadczy to o tym, że przyczyną nadmiernego zawilgocenia są wody gruntowe podciągane kapilarnie do wewnątrz struktury materiału. Wyniki badań przedstawione w artykule dowodzą skuteczności rozwijanych powierzchniowych sond TDR do bezinwazyjnego pomiaru wilgotności materiałów i przegród budowlanych oraz wskazują na przyczyny tego zjawiska w obiektach rzeczywistych.
EN
Psychrometric probes are used for porous materials potential determination which can be easily recalculated into the relative moisture. They can be also applied for building materials moisture parameters determination. They enable relative moisture readout in the narrow range between 94 and 99.9%. Water film evaporating from the thermocouple causes temperature decrease and generation of a voltage in a range of microvolts. Due to external heat flux influence on the applied sensors (Wescor PST-55 probes) the measurement must be conducted in the stabilized conditions. Non-stable heat flows and thus the decrease of measurement results repeatability. This is especially important during measurement of porous material samples with small dimensions. To increase the measurement accuracy the probes were equipped with metal sleeves having the external diameter of 12 mm and wall thickness 1 mm. The aim of the sleeve is to stabilize the instantaneous temperature variations and bridge the heat flow around the psychrometric Peltier probe.
PL
Sondy psychrometryczne służą do pomiaru potencjału wody materiałów porowatych, którą można przeliczyć na wilgotność względną. Stosowane są od lat w agrotechnice i mogą również być zastosowane do pomiarów parametrów wilgotnościowych materiałów budowlanych. Umożliwiają odczyt wilgotności względnej w wąskim zakresie około 94÷99,9%. Jest to możliwe dzięki zjawisku Seebecka, odparowujący film wody z termopary powoduje obniżenie jej temperatury i wygenerowanie mikrowoltowego napięcia. Z uwagi na niską wartość mikrowoltowego napięcia generowanego na sondach Wescor PST-55, użytych podczas badań, pomiary muszą odbywać się w ustabilizowanych warunkach. Nieustabilizowane przepływy strumienia ciepła lub skoki temperatury powodują zmniejszenie powtarzalności wyników pomiarów. Ma to szczególne znaczenie podczas pomiarów próbek materiałów porowatych o niewielkich wymiarach geometrycznych. W celu zwiększenia dokładności pomiarów sondy zostały osłonięte metalowymi tulejami o średnicy 10 mm i grubości ścianki 1 mm. Zadaniem takiej tulei jest stabilizowanie nagłych wahań temperatury i regulowanie przepływów strumienia ciepła wokół sondy psychrometrycznej Peltiera.
EN
Aerated concrete is the basic building material applied in traditional building industry. It is mainly caused by its thermal parameters - heat conductivity coefficient λ for lighter brands of this material is many times lower than other traditional materials like brick etc. Low value of heat conductivity coefficient is mainly caused by the material structure which is highly porous. This porosity causes capillary forces which are the reason of so called capillary rise phenomenon being the reason of many buildings destruction. This article presents the possibility of monitoring and quantitative valuation of moisture increase in building barriers due to capillary rise with the application of the TDR surface probes enabling quick and noninvasive moisture determination in porous building materials. The analyses conducted using surface TDR probes will be compared with the examinations made using other electrical methods and the results will be presented in the form of moisture profiles changing in time.
PL
Beton komórkowy jest podstawowym materiałem budowlanym stosowanym w budownictwie tradycyjnym. Wynika to głównie z jego właściwości termoizolacyjnych - współczynnik przewodzenia ciepła λ dla lżejszych jego odmian jest wielokrotnie niższy od wartości tego współczynnika takich materiałów, jak cegła itp. Niska wartość współczynnika przewodzenia ciepła wynika głównie ze struktury materiału, która charakteryzuje się dużą porowatością. Z właściwością tą wiąże się fakt występowania sił kapilarnych, które są przyczyną zjawiska podciągania kapilarnego będącego przyczyną destrukcji wielu budynków dotkniętych nadmiernym zawilgoceniem. Artykuł przedstawia możliwość monitoringu i ilościowej oceny wzrostu wilgotności w przegrodach budowlanych wskutek procesu podciągania kapilarnego przy wykorzystaniu powierzchniowych sond TDR, umożliwiających szybkie i bezinwazyjne wyznaczanie wilgoci w porowatych materiałach budowlanych. Analizy wykonane za pomocą sond powierzchniowych porównano do wyników z innych metod elektrycznych i przedstawiono w postaci profili wilgotnościowych zmieniających się w czasie.
EN
Aerated concrete is the basic building material applied in traditional building industry. It is mainly caused by its thermal parameters - heat conductivity coefficient λ for lighter brands of this material is many times lower than other traditional materials like brick etc. Low value of heat conductivity coefficient is mainly caused by the material structure which is highly porous. This porosity causes capillary forces which are the reason of so called capillary rise phenomenon being the reason of many buildings destruction. This article presents the possibility of monitoring and quantitative valuation of moisture increase in building barriers due to capillary rise with the application of the TDR surface probes enabling quick and noninvasive moisture determination in porous building materials. The analyses conducted using surface TDR probes will be compared with the examinations made using other electrical methods and the results will be presented in the form of moisture profiles changing in time.
PL
Beton komórkowy jest podstawowym materiałem budowlanym stosowanym w budownictwie tradycyjnym. Wynika to głównie z jego właściwości termoizolacyjnych - współczynnik przewodzenia ciepła λ dla lżejszych jego odmian jest wielokrotnie niższy od wartości tego współczynnika takich materiałów, jak cegła itp. Niska wartość współczynnika przewodzenia ciepła wynika głównie ze struktury materiału, która charakteryzuje się dużą porowatością. Z właściwością tą wiąże się fakt występowania sił kapilarnych, które są przyczyną zjawiska podciągania kapilarnego będącego przyczyną destrukcji wielu budynków dotkniętych nadmiernym zawilgoceniem. Artykuł przedstawia możliwość monitoringu i ilościowej oceny wzrostu wilgotności w przegrodach budowlanych wskutek procesu podciągania kapilarnego przy wykorzystaniu powierzchniowych sond TDR umożliwiających szybkie i bezinwazyjne wyznaczanie wilgoci w porowatych materiałach budowlanych. Analizy wykonane za pomocą sond powierzchniowych porównano z wynikami z innych metod elektrycznych i przedstawiono w postaci profili wilgotnościowych zmieniających się w czasie.
EN
Building materials salinity is an important exploitation problem of many objects, especially those which are built without obeying the essential rules connected with performing of waterproof insulation. Porous structure of building materials which form the building barriers is the cause of water capillary rise and thus the movement of salt ions which are the reason extensive barriers destruction. In high concentrations the salt ions crystallize inside the pores of building materials and are the reason of their destruction. It is especially visible in the form of dropping external layers from the walls - plasters, which are mainly vulnerable on the salinity phenomenon. Simulations and measurements of salinity change processes in building materials give the possibility to evaluate the threat and may help to choose the suitable renovation method. The paper presents measurements of water desorption in aerated concrete sample and also the simultaneous process of salinity change in particular layers of the material. The measurements of the above mentioned processes are done using TDR probes (Time Domain Reflectometry) which enable constant monitoring of water flow and thus salinity changes.
PL
Zasolenie przegród budowlanych jest znaczącym problemem eksploatacyjnym wielu obiektów, w szczególności tych wzniesionych bez zachowania podstawowych zasad obowiązujących przy wykonywaniu zabezpieczeń przeciwwilgociowych i przeciwwodnych. Porowata struktura materiałów budowlanych, z których wzniesiono przegrody, sprzyja zjawisku podciągania kapilarnego wody, wraz z którą przenoszone są jony soli będące przyczyną przyspieszonego niszczenia przegród. W dużych stężeniach jony soli krystalizują wewnątrz porów materiałów budowlanych i są przyczyną ich niszczenia. Szczególnie jest to widoczne w postaci odpadających zewnętrznych powłok przegród budowlanych - tynków, które są najbardziej narażone na zjawisko zasolenia. Symulacje i pomiary przebiegu procesów zmian zasolenia przegród budowlanych dają możliwość oceny zagrożenia tym zjawiskiem i mogą być podstawą doboru właściwych zabiegów renowacyjnych. Artykuł przedstawia pomiary zjawiska desorpcji w modelowej próbce betonu komórkowego i następującą równolegle zmianę zasolenia w poszczególnych warstwach próbki wskutek powyższego zjawiska. Badania powyżej wymienionego procesu wykonano z wykorzystaniem sond TDR (Time Domain Reflectometry), które umożliwią jednoczesny monitoring zjawiska przepływu wody oraz zmian zasolenia.
18
Content available remote Influence of moisture on heat conductivity coefficient of aerated concrete
EN
The article presents the experiment which determines moisture influence on aerated concrete heat conductivity parameter. Applied experimental setup consisted of two climatic chambers generating cold and hot temperatures on two sides of the sample which was equipped with necessary sensors to measure temperature, heat-flux and moisture. For moisture determinations the Time Domain Reflectometry technique was applied, which is currently developed method for moisture determinations of building materials and barriers. The result of the experiment was determination of heat conductivity coefficient of aerated concrete as a parameter which may be used in heat and moisture transport modeling in building barriers.
PL
Przedstawiono eksperymentalne badanie wpływu wzrostu wilgotności na współczynnik przewodnictwa cieplnego betonu komórkowego. Zastosowany zestaw pomiarowy składał się z dwóch komór klimatycznych generujących niskie i wysokie temperatury po przeciwnych stronach próbki wyposażonej w niezbędne czujniki do pomiaru temperatury, strumienia ciepła oraz wilgotności. Do pomiarów wilgotności zastosowano technikę TDR (Time Domain Reflectometry) - obecnie wdrażaną do pomiaru zawartości wody w materiałach i przegrodach budowlanych. Rezultatem opisanego eksperymentu jest wyznaczenie współczynnika przewodzenia ciepła betonu komórkowego w stanie suchym oraz w warunkach różnej wilgotności.
EN
Water present in external walls is one of the basic factors curtailing the function of buildings. Its negative influence should be evaluated both in the constructional and hygienic aspects. It is caused by the fact that water is not only the cause of successive destruction of buildings’ construction, but also composes the base for the growth of microorganisms and moulds. Such a problem is typical for the buildings without moisture check or monitoring and causes the respiratory system illnesses, infections, allergies, eyes and skin sensitizations. The buildings affected by the problem of moisture in most cases are stricken with the Sick Building Syndrome, which is caused by the use of not human-friendly materials, defective ventilation or high moisture previously mentioned. Presence of water in building envelopes in moderate climate is a normal and practically inevitable phenomenon. The problem of external barriers moisture becomes important in case of high moisture content. It is especially caused by the improper horizontal damp insulation and mainly observed in many historical buildings or sometimes, even new ones. Other causes of high water content in building barriers are floods, heavy rains or sanitary systems faults. Water contained in building barriers in high content is especially dangerous during winter seasons when numerous freezing and thawing causes building material disintegration. Presence of water in external walls significantly diminishes their thermal isolation, what induces the increased heat loss in cold season, reduction of perceptible temperature and thermal comfort of occupants. All the previously mentioned negative aspects of water influence on the buildings cause the need to find the precise, user-friendly method of water content evaluation in the walls. One of them is TDR (Time Domain Reflectometry). This technique bases on the measurement of the electromagnetic pulse propagation velocity in examined medium. The dielectric constant of the material (determined with the TDR device) is the base for its moisture content estimation. The TDR method has got a lot of advantages like high monitoring potential, insensitivity to the salinity, relatively simple service, and has been used in moisture measurements of porous materials, especially of the soils, for many years. By now, this technique has not found the common implementation in the building industry which is caused by its invasive character – it requires the installation of the steel rods in the examined medium, which sets many problems in case of building materials and envelopes. The aim of this paper is to propose the alternative idea of the TDR probe – surface probe, which enables the moisture measurements of hard building materials and envelopes. For these materials, the use of classical probe is difficult to realize, because of problems with the introduction of the steel rods in the examined medium. This, modified, TDR method enables the effective moisture measurements without the need to destroy the building barriers structure.
PL
Woda zawarta w zewnętrznych przegrodach budowlanych należy do podstawowych czynników ograniczających funkcjonowanie budynków. Jej negatywny wpływ na obiekty należy oceniać zarówno ze względów konstrukcyjnych, jak i higieniczno-sanitarnych. Duża wilgotność przegród budowlanych jest przyczyną sukcesywnego niszczenia konstrukcji budynków (krystalizacja soli, wielokrotne procesy zamarzania i rozmarzania w okresie zimowym, rozkład drewna oraz przyspieszona korozja stalowych elementów zbrojeniowych). Woda, w sposób pośredni, wywołuje negatywny wpływ na środowisko wewnętrzne pomieszczeń, tworząc podłoże do rozwoju szkodliwych mikroorganizmów oraz grzybów pleśniowych. Jest to problem typowy dla obiektów z nieuregulowaną i niemonitorowaną wilgotnością przegród, będący przyczyną chorób dróg oddechowych, infekcji, alergii oraz podrażnień oczu i skóry. Obiekty dotknięte problemem zawilgocenia przegród zewnętrznych w większości przypadków określamy jako dotknięte zespołem chorego budynku SBS (Sick Building Syndrome), którego przyczyną jest zastosowanie nieprzyjaznych człowiekowi materiałów budowlanych, wadliwa wentylacja lub właśnie nadmierne zawilgocenie przegród. Woda w przegrodach budowlanych w znaczący sposób obniża ich charakterystyki cieplne, co w konsekwencji prowadzi do zwiększonych strat ciepła w sezonie grzewczym, obniżenia temperatury odczuwalnej, obniżenia komfortu cieplnego pomieszczeń. Wszystkie wyżej przedstawione negatywne aspekty wpływu wody na obiekty budowlane stwarzają potrzebę znalezienia precyzyjnej i możliwie łatwej metody oceny zawartości wody w przegrodach. Do takich metod zaliczamy reflektometryczną metodę pomiaru wilgotnooeci TDR (Time Domain Reflectometry). Funkcjonowanie tej techniki oparte jest na pomiarze prędkości propagacji impulsu elektromagnetycznego w badanym materiale. Wyznaczona ze znanej zależnooeci względna stała dielektryczna materiału jest podstawą do ustalenia jego wilgotności. Metoda ta ma wiele zalet (możliwość ciągłego monitoringu, brak wrażliwości na zasolenie, stosunkowa prostota obsługi) i od wielu lat stosowana jest do pomiaru wilgotności ośrodków porowatych, a w szczególności ośrodków gruntowych. Nie znalazła ona do tej pory szerokiego zastosowania w dziedzinie budownictwa. Przyczyną tego jest jej inwazyjny charakter – do realizacji pomiaru niezbędne jest wprowadzenie stalowych prętów w badany ośrodek, co stwarza wiele problemów w przypadku materiałów oraz przegród budowlanych. Celem pracy jest przedstawienie alternatywnej konstrukcji – powierzchniowej sondy TDR, która umożliwia pomiary wilgotności materiałów oraz przegród budowlanych charakteryzujących się znaczną twardością, dla których zastosowanie klasycznej, dwuprętowej sondy, wymagającej wprowadzenia stalowych prętów w badany ośrodek jest trudne do zrealizowania. Metoda ta umożliwia skuteczne pomiary wilgotności bez konieczności niszczenia konstrukcji przegrody.
EN
The interceptor of urban wastewater should be treated as a collector and transporter of sewage and also as a bioreactor, with a continuous inflow, growth and washing out of biomass. Specific sewage biodegradation processes were described by suitable mathematical models of biomass growth and decay. For given system it is possible to compose the matrix of integrated process of organic substance transformation in the gravitational sewer system. Numerical model based on described processes contains stoichiometric and kinetic parameters of sewage biodegradation appropriate to living microfauna of saprobionts as a biological processing factor in sewer pipe and a precursor of activated sewage sludge in wastewater treatment plant. Complete numerical implementation of a model includes also a module of sewer channel hydrodynamic calculation based on Saint-Venant equation. As a last part of necessary modules advection-dispersion equation is used. This kind of model, makes it possible to demonstrate the changes of pollutants load change to the wastewater treatment plant through interceptor of a sewage system. It can be also used to predict influence of combined sewer overflows on receiving waters. This paper, based on the previous achievements is a case study to create a model describing the process of self-purification of urban sewage running in gravitational sewer in the presence of saprobiontic microfauna.
PL
W grawitacyjnych systemach kanalizacyjnych zachodzą procesy zarówno fizyczne, chemiczne, jak i biologiczne. Biodegradacja oecieków, prowadząca do rzeczywistego ubytku ładunku zanieczyszczeń podczas ich przepływu w kanalizacji, jest ważnym procesem zmieniającym ilooeć i jakość niesionych zanieczyszczeń. Stąd też kolektor grawitacyjny powinien być traktowany zarówno jako tlenowo-beztlenowy reaktor biologiczny, jak i urządzenie do zbierania i transportu oecieków. W prezentowanej pracy proces biodegradacji ścieków opisano za pomocą modelu matematycznego wzrostu i rozwoju populacji mikroorganizmów, który stanowi człon źródłowy w równaniu dwekcji-dyspersji. Parametry hydrodynamiczne powiązane z wysokością napełnienia kolektora grawitacyjnego systemu kanalizacyjnego, wykorzystywane w symulacjach, są obliczane za pomocą równania Saint-Venanta. Prezentowany model może być pomocny podczas określania dynamiki zmian ładunków zanieczyszczeń dopływających do oczyszczalni poprzez kolektory systemu kanalizacyjnego oraz prognozowania oddziaływania przelewów burzowych na wody odbiornika.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.