Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Procesy przenoszenia energii (FRET) w badaniach czteroniciowych form DNA
EN
DNA sequences with stretches of multiple guanines can form four-stranded tetraplex DNA structures called guanine-quadruplexes or G4 DNA. They contain stacked arrays of planar guanine quartets linked by connecting loops. Evidence supports the occurrence of quadruplexes in the cell nucleus and a number of biological functions have been attributed to quadruplexes. In eukaryotic systems guanine-rich sequences are positioned at the ends of chromosomes and are called tclomcric DNA. The study of telomeric DNA has acquired importance through the discovery of the relationship between telomerase activity in most cancer cells and telomere folding into tetraplex structure. Coordination of certain metal cations stabilizes G-quadruplex as do some promising small organic molecules, which are regarded as potential anticancer drugs. Among many techniques employed to explore properties of G-quadrupIexes, fluorescence resonance energy transfer (FRET) has been recognized as a powerful tool to explore tetraplex formation due to extreme sensitivity and the distance dependency of the FRET process. This review shows how FRET contributes to G-quadruplex research and focuses on the FRET application, describing briefly also the underlying principles. Information about molecular structure, binding events, and motion are considered to be potentially available from FRET measurements. In a typical FRET experiment a guanine-rich oligonucleotide labeled with proper fluorophores (FRET donor and acceptor) undergoes structural transformations (folding or unfolding), which are monitored by spectral changes in the fluorescence spectra of FRET partners. We tried to summarize the current developments in the field of the various applications of FRET measurements for the fundamental structural and kinetic investigations of G-quadru-plexes and their complexes with metal cations and organic ligands. Fundamental applications include studies of quadruplex unfolding kinetics with the use of complementary DNA or PNA (Peptide Nucleic Acid) strands as a duplex trap or determination of thermodynamic parameters. Practical applications are illustrated by the FRET-based selection of quadruplex-binding ligands, construction of the quadruplex-based nanomotor, design of molecular probes for protein recognition, and development of sensors for the detection of potassium ions in aqueous media. The presented examples of FRET studies showed that FRET is particularly use ful in structural studies of oligonucleotides capable of folding into tetraplex structure.
EN
The interactions of G-quadruplex DNA with two oxidation products of papaverine, 6a,12a-diazadibenzo-[a,g]fluorenylium derivative (1) and 2,3,9,10-tetramethoxy-12- oxo-12H-indolo[2,1-a]isoquinolinium cation (2) were investigated. Effect of the organic modifier (EtOH) and NaCl on the spectral properties and aggregation of free ligands and on the DNA-binding affinity were assessed. Ligand 1 exhibited tendency for aggregation and showed higher binding selectivity for G-quadruplex DNA over double-stranded DNA. Both ligands were capable of interacting with DNA according to three binding modes: (i) electrostatic interactions, (ii) classical intercalation to dsDNA, and (iii) the specific binding to quadruplex DNA. The cytotoxic activity of ligand 2 was generally higher than that for ligand 1, approaching a micromolar concentration level that may suggest its telomerase inhibition activity.
EN
The DNA binding affinity and anion effect on the aggregation of a G-quadruplex selective ligand, 6a,12a-diazadibenzo-[a,g]fluorenylium derivative, were studied by UV-Vis absorption, molecular modeling and fluorescence spectroscopy. The anion character and its concentration influenced the spectral properties of ligand aggregates. Observed spectral peculiarities were discussed in terms of the formation of H- and J-type aggregates. The DNA binding mode and affinity of the ligand depended on the salt concentration; preferential binding to G-quadruplexDNAwas clearly seen at higher salt concentration.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.