Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents results of research demonstrating the effects on heat of combustion of adding press cake from three varieties of soyben Erica, Mavka and Sirelia to soyben stalk based briquette. The conducted research shows that heat of combustion of soyben stalk was 15.2 [MJ∙kg-1], much lower than the heat of combustion of press cake from four. Press cake heat of combustion from the most effective Erica soyben variety was 23.4 [MJ∙kg-1], or 54% (w/w) more than that of rape stalk. Press cake heat of combustion from the least effective soyben variety was 19.8 [MJ∙kg1], or 30% (w/w) more than that of soyben stalk. Adding 20% (w/w) of press cake during briquette production Erica varieties resulted in an increase in heat of combustion by approximately 10,5; and a 40% (w/w) addition resulted in a further increase of approximately 20,4%, a 60% (w/w) addition of press cake increased heat of combustion by approximately 31,6 whereas an 80% (w/w) press cake content increased heat of combustion by more than 38,8%.
EN
The aim of the study was to compare the impact of dynamic viscosity of two biofuels. One was a mixture of 50% (m / m) SBME and 50% (m / m) RME of own production. The mixture was conventionally called FAME. The second biofuel was commercial RME from a gas station. Dynamic viscosity as a function of temperature from -20 to 50oC was tested. The main device used at the measuring stand was ReolabQC rheometer manufactured by a German Anton Paar GmbH company. Dynamic viscosity especially grew rapidly after cooling biofuels to temperatures below -5°C. Dynamic viscosity FAME biofuels produced from pure vegetable oil (soybean oil and rapeseed oil) in a temperature range of 50 to -20°C has a value of c.a. 9 to 53[mPa∙s]. Dynamic viscosity of Biofuel FAME produced from mixtures of vegetable oils it was on average lower by about 1 to 8 [mPa∙s] of RME shopping from a gas station.
EN
The aim of the study was to determine the impact of the fish frying process on the distillation properties of FAME and its mixtures with diesel fuel. The fish was fried at 160°C for 2 hours. Frying one serving lasted 6 minutes. The frying oil was a mixture of 50% (v/v) rapeseed oil and 50% (v/v) sunflower oil. The study showed that FAME biodiesel made from unused (pure) oil has similar distillation properties. The largest differences were observed for distillation temperatures of 85% and 100% and the final temperature of the distillation process. This may indicate a slightly lower purity of FAME produced from used cooking oil. In such a biofuel there may be more less volatile mono- and diglycerides or other chemicals that, e.g. after frying, remain in oil. It must be said, however, that they are not solid particles because they have been separated from the oil by filtration.
EN
The paper presents the results of research on the impact of Perkins 1104D-44TA engine powered with sunflower oil methyl esters and, for comparison, with diesel fuel, in terms of emission of CO, THC, NOx and O2. The tests were carried out on the engine test stand. During the tests, the engine worked according to the external speed characteristics in the range from 1000 to 2200 rpm. The esters used for powering the tested engine were produced using the GW 200 reactor designed and made by Grzegorz Wcisło, one of the co-authors of the paper. The results of the tests carried out showed a decrease in the concentration of carbon monoxide in the exhaust gases, hydrocarbons when powering the engine with sunflower oil esters in relation to powering the engine with diesel fuel. At the same time, the concentration of nitrogen oxides and oxygen in the exhaust gases increased. The reduction of THC and CO emissions is the result of better combustion and afterburning of fuel. However, the increase in the amount of oxygen in the exhaust gases results from the fact that in the biofuel structure there is oxygen which is used in combustion and reduces the oxygen demand from the atmosphere. On the other hand, the increase in NOx emissions is the result of a higher combustion temperature than when the engine is powered by diesel fuel.
EN
The article presents the results of tests determining the impact of using sunflower oil methyl esters on power and torque as well as unitary and hourly fuel consumption of the Perkins 1104D-44TA engine. Biofuels were produced in the Fuel and Energy Laboratory belonging to the Maopolskie Centrum Energii Odnawialnej (Małopolskie Center for Renewable Energy Sources), while analyzes of the selected fuel parameters were performed both in the above-mentioned laboratory and in the Liquid Biofuels Laboratory at the University of Agriculture in Krakow. Engine tests were carried out on the engine test stand at the Kielce University of Technology. During the tests, the engine worked according to the external speed characteristic. The results of the tests have shown that the engine supplied with the SME achieves slightly lower values of both power and torque than in the case of commercial fuel oil type Ekodiesel Ultra from the ORLEN S.A company. There was also an increase, especially in the case of higher unitary fuel consumption. Hourly fuel consumption was higher when supplied with SME in relation to the diesel fuel supply, although not as much as unitary consumption. The increase in SME consumption at the engine supply can be explained by the lower fuel value of SME, which contains oxygen in its structure.
EN
The article presents the impact of hydrocarbon fuel angle of injection on heat emission characteristics in a compression - ignition AD3.152 engine. The angle of injectionhas a significant impact on the primary engine operating parameters and combustion process indicators, which include the proportion of combustion which occurs according to kinetic and diffusion models, heat emission rate and the combustion process duration. The characteristics describing emission of a relative heat quantity were determined on the basis of an analysis of actual, indicator diagrams averaged over 100 runs, under the assumption that the combustion process ends by the time the exhaust valve opens. During the test, the engine operated according to an external speed characteristic. Tests were carried out for three fuel angles of injection: 13, 17 and 21 crankshaft rotation degrees.
EN
The publication presents test results for a Perkins 1104D - 44TA engine powered by SME sunflower oil fatty acids methyl esters. The SME biofuel was manufactured in-house using a GW-200 reactor at MCOŹE "BioEnergia". The test was carried out at an engine test stand at Kielce University of Technology's Heat Engine Laboratory. During the test the engine operated according to an external speed characteristic. The tests aimed to determine the impact of using an SME type biofuel to power the engine on the engine's primary performance indicator values. A slight decrease to the brake horsepower and torque of the tested engine powered by sunflower oil esters as compared to diesel was recorded. Fuel consumption of the engine powered by plant origin fuel also increased. No operating problems were experienced associated with powering the engine using sunflower oil esters during the tests.
EN
Fuels constitute one of the research areas within the scope of piston internal combustion engines. The works encompass both conventional as well as alternative fuels. Fuels are sought which will contribute to a reduction in the negative impact of transport on the natural environment and humans. These may be fuels obtained from organic raw materials of agricultural (most often) or forest origin. When it comes to compression-ignition engines, Biodiesel B100 type biofuels can be used to fuel them, which most often constitute a long chain fatty acid ester, made from plant oils or animal fats. The publication presents ecological indicator test results for a compression – ignition engine fuelled by SME Biodiesel, or sunflower oil methyl esters and commercially available diesel as a benchmark. During the tests, the engine operated according to load characteristics at two different crankshaft rotational speeds. A sunflower oil ethyl ester fuelled engine returned beneficial values for most of the tested ecological indicators as compared to a diesel fuelled engine. Concentrations of substances such as CO, CO2, unburned hydrocarbons (THC), particulate matter (PM) were lower in the engine emissions, exhaust smoke levels were also reduced. Only nitrogen oxides (ONx) increased.
EN
Similarly to diesel oil (B7), Biodiesla B100 CME dynamic viscosity at positive temperatures in principle increases with decreasing temperature. Having exceeded 263K, it begins to increase rapidly. The dynamic viscosity for B100 CME at 253 K was 204 mPa·s, for B75 CME – 118 mPa·s, for B50 CME – 77 mPa·s and for B20 CME – 42 mPa·s. The study has shown that B100 CME cannot be used in practice as a pure fuel without a package of viscosity-lowering additives. At the same time, the viscosity values for B5 and B20 biofuels, in particular at positive temperatures, are close to the viscosity of diesel fuel. Under such conditions one can safely use B7 and B20 biofuels in compression-ignition engines, even in those with a state-of-the-art injection apparatus.
PL
Lepkość dynamiczna biodiesla B100 CME w zakresie dodatnich temperatur w zasadzie rośnie wraz z obniżaniem temperatury, podobnie jak oleju napędowego (B7). Natomiast po przekroczeniu 263 K zaczyna gwałtownie rosnąć. Lepkość dynamiczna w temperaturze 253 K – B100 CME wynosiła 204 mPa·s, B75 CME – 118 mPa·s, B50 CME – 77 mPa·s, natomiast B20 CME – 42 mPa·s. Przeprowadzone badania pokazały, że w praktyce B100 CME nie może być stosowane jako samoistne paliwo, bez zastosowania pakietu dodatków obniżających lepkość. Natomiast dla biopaliw typu B7 i B20 wartości lepkości szczególnie w zakresie dodatnich temperatur są zbliżone do lepkości oleju napędowego. W takich warunkach bez obaw można używać B7 i B20 do zasilania silników z zapłonem samoczynnych nawet posiadających nowoczesną aparaturę wtryskową.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.