Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Electrophysical stimulation is used to support fracture healing and bone regeneration. For design optimization of electrostimulative implants, in combination with applied human donor bone or synthetic bone scaffolds, the knowledge of electrophysical properties is fundamental. Hence further investigations of the structural properties of native and synthetic bone is of high interest to improve biofunctionality of bone scaffolds and subsequent healing of the bone defect. The investigation of these properties was taken as an objective of this study. Therefore, surgically extracted fresh cylindrical and consecutively ashed cancellous bone samples from human osteoarthritic femoral heads were characterized and compared to synthetic bone substitute material. Thereby, impedance spectroscopy is used to determine the electrophysical properties and X-ray powder diffraction (XRD) for analysis of structural information of the bone samples. Conductivity and permittivity of fresh and ashed cancellous bone amounted to 1.710–2 S/m and 7.5106 and 210–5 S/m and 7.2103 , respectively. Electrical conductivity and dielectric permittivity of bone scaffold resulted in 1.710–7 S/m and 49. Analysis of the structural properties showed that the synthetic bone scaffolds made of Brushite exhibited some reflections which correspond to the native bone samples. The information in present study of the bone material (synthetic and autologous) could be used for later patient individual application of electrostimulative implants.
EN
Purpose: Footwear and equipment worn by military personnel is of importance for them to be able to meet the physical demands specific to their profession daily activities. Aim of the present study was to investigate by means of gait analysis how army-provided footwear and equipment influence the range of motion of hip, knee and ankle joints as well as stride length.Methods: Thirty-two soldiers were subjected to gait analysis on a treadmill by way of video recordings and goniometric measurements. Results: The stride length increased when military shoes are worn. We found no influence on stride length in connection to increased loading. The weight of the shoes represents the decisive factor. Neither shoes nor equipment changed the range of motion of the knee joint.Weight of equipment affected range of motion of the hip joint. The range of motion of the upper and lower ankle joints was mainly influenced by the properties of the shoes. Conclusions: Military footwear and weight of equipment influence stride length and range of motion of joints of the lower extremities in a specific way. Shape of material is the decisive factor.
EN
Overexertion and pain of the musculoskeletal system may occur partly owing to load application by the equipment. Both the weight of equipment and the duration of loading are relevant. The aim of the present study was to examine the extent of loading and resultant strain in the trunk muscles. Therefore, the trunk posture of soldiers and muscular activity in reaction to different equipment components (helmet, load-carrying equipment, gun and backpack) were evaluated. Electromyography was performed and a visual assessment of body axis was conducted based on standardised planar images. Data indicate that the activity of the trunk muscles examined (latissimus dorsi, trapezius and pectoralis major) is dependent on the weight and distribution of the equipment components. Activity in the trapezius muscle, for instance, was doubled during specific load application. Moreover, the method of carrying the rifle had a significant influence on the activity of the trapezius muscle (one-sided decrease of activity by 50%). Subjects were able to stabilise the body axis in the coronal plane through increased muscle activity, however, in the sagittal plane a compensatory ventral inclination of the body was observed. Uneven load distribution can lead to an irregular strain on the musculoskeletal system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.