Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A comparative analysis of the efficiency of activated carbon produced from fermented cassava peels (CPB), unfermented cassava peels (CPA) and commercial grade activated carbon (CAC) in the treatment of refinery wastewater was carried out. CPB was found to be 8% and 18% more efficient when compared to CPA and CAC in the removal of COD, and 14% and 3% better than CAC and CPA respectively in the removal of BOD5. The removal efficiency of Pb2+ by CPB was 100% compared to 95% and 57% by CPA and CAC while 96% of phenol was removed by CPB against 93% and 83% by CPA and CAC respectively. This better performance of CPB over CPA and CAC is not unconnected with its higher pH resulting from the removal of cyanide from the peels during the fermentation process. However, despite the high phenol removal efficiency by CPB, the concentration of phenol in the treated effluent does not meet the environmental guidelines for disposal. It is therefore, recommended that a two-stage CPB adsorption column arranged in series is necessary to treat refinery wastewater efficiently if it is desired to totally remove phenol from the effluent or reduce the concentration to 0.005 mg/l allowed by the Federal environmental protection agency (FEPA). The equilibrium adsorption test conducted showed that the Freundlich isotherm is a better fit for the adsorption of phenol by the three activated carbons with correlation coefficients (R2) of 0.9364, 0.9383 and 0.9541 for CAC, CPA and CPB respectively. CPB was found to be a better adsorbent as it has the highest adsorptive capacity as evidenced from its better Freundlich exponent.
EN
In this study, comparative potential effects of commercial activated carbon (CAC) and plantain peel-derived biochar (PPBC) of different particle sizes and dosage to stimulate petroleum hydrocarbon biodegradation in soil were investigated. Microcosms containing soil were spiked with weathered Bonny light crude oil (WBLCO) (10% w/w) and amended with different particle sizes (0.02, 0.07 and 0.48 mm) and dosage (20, 30 and 40 g) of CAC and PPBC, respectively. The bioremediation experiments were carried out for a period of 28 days under laboratory conditions. The results showed that there was a positive relationship between the rate of petroleum hydrocarbons reduction and presence of the CAC and PPBC in crude oil contaminated soil microcosms. The WBLCO biodegradation data fitted well to the first-order kinetic model. The model revealed that WBLCO contaminated-soil microcosms amended with CAC and PPBC had higher biodegradation rate constants (k) as well as lower half-life times (t1/2) than unamended soil (natural attenuation) remediation system. The rate constants increased while half-life times decreased with decreased particle size and increased dosage of amendment agents. ANOVA statistical analysis revealed that WBLCO biodegradation in soil was significantly (p = 0.05) influenced by the addition of CAC and biochar amendment agents, respectively. However, Tukey’s post hoc test (at p = 0.05) showed that there was no significant difference in the bioremediation efficiency of CAC and PPBC. Thus, amendment of soils with biochar has the potential to be an inexpensive, efficient, environmentally friendly and relatively novel strategy to mitigate organic compound-contaminated soil.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.