Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present study explores magnetic nanoliquid mixed convection in a double lid–driven U-shaped enclosure with discrete heat-ing using the lattice Boltzmann method (LBM) numerical method. The nanoliquid thermal conductivity and viscosity are calculated using the Maxwell and Brinkman models respectively. Nanoliquid magnetohydrodynamics (MHD) and mixed convection are analyzed and entropy generation minimisation has been studied. The presented results for isotherms, stream isolines and entropy generation describe the interaction between the various physical phenomena inherent to the problem including the buoyancy, magnetic and shear forces. The operating parameters’ ranges are: Reynolds number (Re: 1–100), Hartman number (Ha: 0–80), magnetic field inclination (γ: 0°–90°), nanoparticles volume fraction (ϕ: 0–0.04) and inclination angle (α: 0°–90°). It was found that the 𝑁𝑢𝑚 and the total entropy generation augment by increasing Re, ϕ: and γ. conversely, an opposite effect was obtained by increasing Ha and α. The optimum magnetic field and cavity inclination angles to maximum heat transfer are γ = 90° and α = 0.
EN
The present study deals with fluid flow, heat transfer and entropy generation in a two-dimensional channel filled with Cu–water nanoliquid and containing a hot block. The nanoliquid flow is driven along the channel by a constant velocity and a cold temperature at the inlet, and the partially heated horizontal walls. The aim of this work is to study the influence of the most important parameters such as nanoparticle volume fraction (0%≤ϕ≤4%), nanoparticle diameter (5 nm≤dp≤55 nm), Reynolds number (50≤Re≤200), Hartmann number (0≤Ha≤90), magnetic field inclination angle (0≤γ≤π) and Brownian motion on the hydrodynamic and thermal characteristics and entropy generation. We used the lattice Boltzmann method (LBM: SRT-BGK model) to solve the continuity, momentum and energy equations. The obtained results show that the maximum value of the average Nusselt number is found for case (3) when the hot block is placed between the two hot walls. The minimum value is calculated for case (2) when the hot block is placed between the two insulated walls. The increase in Reynolds and Hartmann numbers enhances the heat transfer and the total entropy generation. In addition, the nanoparticle diameter increase reduces the heat transfer and the irreversibility, the impact of the magnetic field inclination angle on the heat transfer and the total entropy generation is investigated, and the Brownian motion enhances the heat transfer and the total entropy generation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.