Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The current research develops functionalized biocompatible hydroxyapatite (HAp)-rich surface on TNTZ alloy using a novel ball-burnishing assisted electric discharge cladding (BB-EDC) has been presented. The biomechanical properties of HAp-layer, such as mechanical properties, fatigue performance, in-vitro corrosion resistance, and bioactivity, have been investigated. The results showed that EDC-modified surfaces comprised discharge craters, globules, splats structures, and high ridges of redeposited metal. However, the BB-EDC process produced a relatively flat, smooth, dense surface with an average roughness value of 0.75 µm. The HAp-cladded layer by EDC and BB-EDC process featured an irregular surface range 25–30 µm thick and compact layer ranging 5–7 µm thick, respectively. The ball burnishing subjected caused plastic deformation on the developed layer that produced fine microstructure that increased surface hardness from 2.8 to 8.7 GPa. The functional HAp-cladded layer obtained by BB-EDC exhibit excellent corrosion properties. The dense and compact layer comprised a deformed microstructure with high residual stresses that offered high resistance to crack imitation propagation, thus resulting in better fatigue performance of β-phase TNTZ alloy. Furthermore, in-vitro bioactivity results showed that BB-EDC modified exhibit anti-inflammatory surface and promoted cell growth. The findings of the current research work offer up new possibilities for biomedical, automobile and aerospace industries to utilize the potential of BB-EDC as a new surface engineering technology to develop functionalized surfaces with improved surface characteristics and mechanical properties.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.