Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Basing on the mathematical model developed with the account of influence of bottom sediments, the parameters of benzene migration in the river caused by one-time discharge into the Stryi River were investigated. The mathematical model of migration consists of two equations that describe the movement of pollutants in the river system, taking into account the flow rate, diffusion, sorption and desorption of the pollutant by the bottom sediments of the river. The parameters of benzene distribution in the "water-bottom sediments" system were experimentally determined under laboratory conditions. With the help of computer modeling, the temporal and spatial distributions of benzene in water and bottom sediments were obtained. The regularities of benzene concentration change depending on the composition of the bottom sediments of the river have been established. The dependencies can be extrapolated to other river systems and pollutants.
EN
Using a mathematical model that includes the influence of bottom sediments, a comprehensive study of the migration of benzene (C6H6) as a result of its continuous release into a mountain river was conducted. The adopted migration model consists of two equations that accurately describe the movement of pollutants within the river system, considering crucial factors such as flow velocity, diffusion, sorption, and desorption by river sediments. Through meticulous laboratory experiments, the distribution parameters that govern the behavior of benzene (C6H6) within the water-sediment system were successfulully determined. Leveraging advanced computer modeling techniques, intricate spatiotemporal profiles illustrating benzene (C6H6) concentrations in both water and sediments were generated. Furthermore, consistent patterns in the fluctuations of benzene (C6H6) concentrations that exhibit strong correlation with the specific composition of river sediments were identified. Importantly, these foundational relationships can be extrapolated to diverse river systems and various categories of pollutants.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.