Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper shows a preliminary study of the basic strength parameters of printed parts made of biocompatible polymers with ceramic layers applied to increase the strength of the tool cutting surface. Methods: The specimens were made from different materials and using different 3D printing technologies and the working surfaces that will eventually form the cutting element of the tool were coated with Al2O3. Gloss tests were conducted, properties of the coating, a scratch test of the coated surface, also evaluated surface topography. Results: Based on the conducted research, it was found that polymeric materials are characterized by sufficient strength and can be used for disposable tools, however, the use of thin layers of Al2O3 significantly increases the surface strength parameters, which may have a significant impact on the reliability and durability of the tools. The polymer surface covered with an Al2O3 layer is characterised by increased scratch resistance ranging from 24% to 75% depending on the core material and printing technology. The gloss of the surfaces is disproportionately low compared to currently used metal tools, which indicates that they can be used in endoscopic procedures. Conclusions: Based on the conducted research, it was found that the use of thin layers of Al2O3 covering polymer 3D prints is an excellent way to increase strength parameters such as scratch resistance, tribological parameters and light reflections arising on the surface as a result of endoscopic lighting are disproportionately small compared to metallic biomaterials. This gives great hope for using polymer 3D prints for personalised neurosurgical tools.
EN
The main aim of the researches was the three-dimensional morphological assessment of the mandible in children. Materials&Methods: The research group consisted of 34 infants from 21 to 417 days of age (0-13 months). Models of the mandibles were developed on the basis of tomographic images. Characteristic anatomical points were marked on the models, on the basis of which characteristic distances and angles were calculated, determining the length, width and height of the mandible as well as its proportion and symmetry. Based on the obtained database, models of mandibular growth in the first year of life in three directions were also developed. Conclusion: The analysis of the results revealed some significant objective information on the growth and development of the normal mandible.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.