The paper presents the results of a study on the microstructure and hardness measurements of Al4Cu-xSiC (x = 5, 10, 20 and 30 wt.%) composites produced by spark plasma sintering (SPS). The sintering process was carried out in an HP D 25/3 plasma sintering furnace in a vacuum atmosphere, with sintering temperatures of 580 and 600°C and a densification pressure of 50 MPa. The heating rate was 100°C/min and the isothermal holding time at the sintering temperature was 2.5 min. As a reference material, the AlCu matrix was sintered under the same conditions. As a result, composites with a near-full density of 96.5-99.5% were obtained. Microstructure studies were performed employing the techniques of light microscopy, scanning, and transmission electron microscopy, along with analysis of the chemical composition in microareas. The test results did not reveal remarkable differences in the microstructure of the investigated composites sintered at 580 and 600°C. The sinters have a fine-grained microstructure with a strengthening phase located at the grain boundaries; locally, pores are visible. Increasing the SiC content in the composites promotes the formation of agglomerates of these particles. It was proven that a higher sintering temperature has a positive effect on the hardness of the studied composites.
In order to investigate the effect of the milling time on the corrosion resistance of the Mg65Zn30Ca4Pr1 alloy, powders of the alloy were prepared and milled for 13, 20, and 70 hours, respectively. The samples were sintered using spark plasma sintering (SPS) technology at 350◦C and pressure of 50 MPa. The samples were subjected to potentiodynamic immersion tests in Ringer’s solution at 37◦C. The obtained values of Ecorr were –1.36, –1.35, and –1.39 V, with polarization resistance Rp = 144, 189, and 101 Ω for samples milled for 13, 20 and 70 h, respectively. The samples morphology showed cracks and pits, thus signaling pitting corrosion.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The article presents the results of the microstructure and tribological properties of Al-xSiC composites (x =70 and 90 wt% SiC) produced in spark plasma sintering (SPS). Due to their attractive thermal, physical, and mechanical properties, aluminum matrix composites with high-volume fractions of silicon carbide (> 50%) have become a major area of interest as a potential material for multifunctional electronic packaging and cryogenic applications. The SPS process was carried out in a vacuum atmosphere under various conditions. Composites with a density close to theoretical (96-98%) were obtained. X-ray diffraction and scanning electron microscopy with EDS analysis were used to characterize the microstructure. Mechanical properties were determined by hardness measurements and a three-point bending test. The tribological properties of the composites were determined utilizing a block-on-ring tribotester. As a criterion for wear resistance, weight loss measured under specific friction conditions, that is, depending on the type of material and the applied load, was adopted. The researched materials were characterized by an even distribution of the carbide phase in the matrix. Composites with the highest SiC phase content (90 wt%) had higher hardness (2537 HV1) and flexural strength (242} 15 MPa) with worse wear resistance at the same time. The weight loss of this composite was 0.43 and 0.76% for friction under loads of 100 and 200 N, respectively, and was 360 and 270% higher than that determined for the composites with the lower content of the SiC phase (70 wt%). The wear rate was three times higher for the Al-90wt%SiC composites.
W artykule przedstawiono metody metalurgii proszków wykorzystywane do wykonywania wyrobów z proszków metalicznych i ceramicznych w Sieci Badawczej Łukasiewicz – Instytucie Obróbki Plastycznej. Do wytwarzania zaawansowanych materiałów metalicznych, ceramicznych oraz kompozytowych zastosowano nowoczesną metodę spiekania iskrowo-plazmowego z wykorzystaniem urządzenia SPS HP D 25-3. Urządzenie to pozwala na realizację procesów spiekania w temperaturze do 2200°C z jednoczesnym prasowaniem z siłą do 250 kN w próżni, atmosferze azotu, argonu lub wodoru. Z kolei do wykonywania wyrobów z proszków na bazie żelaza stosowana jest konwencjonalna metoda prasowania jednoosiowego na zimno i następującego po nim spiekania swobodnego w atmosferze azotowo-wodorowej zdysocjowanego amoniaku z wykorzystaniem gniazda badawczo-doświadczalnego GSMP-75 wyposażonego w piec wgłębny retortowy PSF-12/75. Maksymalna temperatura spiekania wynosi 1200°C. Ponadto omówiono przykładowe prace naukowo-badawcze zrealizowane w ramach zarówno projektów międzynarodowych finansowanych z 7 PR UE oraz Horyzontu 2020, jak i projektów krajowych realizowanych we współpracy z przemysłem. Zaprezentowano wybrane wyniki badań dotyczące kompozytowych sektorów tnących stosowanych w piłach do cięcia kamieni, kompozytowych elektrod nasadkowych stosowanych w zrobotyzowanych stanowiskach zgrzewania punktowego oraz płytek skrawających wykonanych z węglików spiekanych stosowanych w obróbce mechanicznej metali. Poza tym wskazano gałęzie przemysłu, na potrzeby których ŁUKASIEWICZ – INOP wykonuje prace naukowo-badawcze oraz realizuje wdrożenia. Zaprezentowano także ofertę współpracy dla przemysłu.
EN
The article presents the powder metallurgy methods used to make products from metallic and ceramic powders in the Łukasiewicz Research Network – Metal Forming Institute. To produce advanced metallic, ceramic and composite materials, the method of spark plasma sintering employing an SPS HP D 25-3 was used. This device allows sintering processes to be performed at temperatures up to 2200°C with simultaneous compaction with a force of up to 250 kN in vacuum, and in a nitrogen, argon or hydrogen atmosphere. On the other hand, to make products from iron-based powders, the conventional method of cold uniaxial pressing and subsequent free sintering in a nitrogen-hydrogen atmosphere of dissociated ammonia employing a GSMP-75 research and testing socket equipped with a PSF-12/75 retort furnace is used. The maximum sintering temperature is 1200°C. In addition, examples of scientific and research work carried out as part of international projects financed from EU FP7 and Horizon 2020, as well as national projects executed in cooperation with industry are discussed. Selected research results concerning composite cutting sectors used in saws for cutting stones, composite cap electrodes used in robotic spot welding stations and cutting inserts made of cemented carbides used in metal machining were presented. In addition, the branches of industry were identified for which the Łukasiewicz Research Network – Metal Forming Institute performs scientific and research works and executes implementations. A cooperation offer for industry was also presented.
W pracy przedstawiono wyniki badań wpływu temperatury spiekania w zakresie 900–1000°C na mikrostrukturę i wybrane właściwości kompozytów na osnowie stali szybkotnącej M3/2 z 50% dodatkiem wagowym żelaza wytworzonych metodą spiekania iskrowo-plazmowego. Proszek stali szybkotnącej gatunku M3/2 oraz proszek żelaza gatunku NC 100.24 mieszano w mieszalniku Turbula T2F. Przygotowane mieszaniny proszków spiekano z wykorzystaniem urządzenia HP D 25–3. W efekcie spiekania metodą SPS uzyskano kompozyty M3/2–Fe. W mikrostrukturze tych kompozytów występują zarówno ziarna żelaza, jak i ziarna stali szybkotnącej z charakterystycznymi wydzieleniami węglików typu MC i M6C. Osnowa stali szybkotnącej to prawdopodobnie ferryt i bainit. W mikrostrukturze widoczne są także małe pory, w miarę równomiernie rozmieszczone, co świadczy o tym, że temperatura spiekania wynosząca 1000°C jest nieznacznie niższa od optymalnej temperatury spiekania kompozytów M3/2–Fe metodą SPS. Na podstawie wykonanych pomiarów gęstości wykazano, że gęstość względna uzyskanych kompozytów wynosi od 92 do 98% i wzrasta wraz ze wzrostem temperatury spiekania. Ponadto wykazano, że od gęstości względnej zależy twardość oraz wytrzymałość na zginanie. Wraz ze zwiększeniem gęstości względnej od 92 do 98%, uzyskano wzrost twardości od 237 do 367 HBW 2,5/187,5 oraz wytrzymałości na zginanie od 956 do 1107 MPa. Najlepszą relacją gęstość–twardość–wytrzymałość na zginanie odznacza się kompozyt M3/2–Fe uzyskany w temperaturze 1000°C, którego gęstość względna wynosi 98%, twardość wynosi 367 HBW 2,5/187,5, a wytrzymałość na zginanie wynosi 1107 MPa.
EN
The paper presents the results of investigations on the influence of sintering temperature in the range of 900–1000°C on the microstructure and selected properties of composites on an M3/2 high speed steel matrix with a 50 wt% addition of iron produced by spark plasma sintering. M3/2 high speed steel powder and NC 100.24 iron powder were mixed in a Turbula T2F shaker/mixer. The prepared powder mixtures were sintered using an HP D 25–3 furnace. As a result of spark plasma sintering, M3/2–Fe composites were obtained. The microstructure of these composites includes both iron grains and high speed steel grains with characteristic precipitates of MC and M6C carbides. The high speed steel matrix is probably ferrite and bainite. Small evenly spaced pores are also visible in the microstructure, which indicates that the sintering temperature of 1000°C is slightly lower than the optimal sintering temperature of M3/2–Fe composites using the spark plasma sintering. Based on the performed density measurements, it was shown that the relative density of the ob-tained composites is from 92 to 98% and grows with increasing the sintering temperature. In addition, it was shown that the relative hardness and bending strength depend on the relative density. Together with the rise in the relative density from 92 to 98%, increases in the hardness from 237 to 367 HBW 2.5/187.5 and the bending strength from 956 to 1107 MPa were obtained. The M3/2–Fe composite obtained at the temperature of 1000°C is characterized by the best density–hardness–bending strength relation, which amounts a relative density of 98%, hardness of 367 HB 2.5/187.5, and bending strength of 1107 MPa.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.