Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article presents the parametrisation-based methods of monitoring of the process of gravitational silo discharging with aid of capacitance tomography techniques. Proposed methods cover probabilistic Bayes’ modelling, including spatial and temporal analysis and Markov chain Monte Carlo methods as well as process parametrisation with artificial neural networks. In contrast to classical image reconstruction-based methods, parametric modelling allows to omit this stage as well as abandon the associated reconstruction errors. Parametric modelling enables the direct analysis of significant parameters of investigated process that in turn results in easier incorporation into the control feedback loop. Presented examples are given for the gravitational flow of bulk solids in silos.
PL
Niniejszy artykuł przedstawia parametryczne metody rozwiązywania problemu odwrotnego w tomografii pojemnościowej na przykładzie monitorowania procesu przepływu materiałów sypkich przy użyciu tomografii pojemnościowej. Wybrane metody obejmują modelowanie probabilistyczne Bayesa, w tym przestrzenne i czasowe oraz metody Monte Carlo łańcuchów Markowa, a także parametryzację procesu z użyciem sztu cznych sieci neuronowych. W odróżnieniu od klasycznych metod opartych na algorytmach rekonstrukcji obrazu parametryzacja pozwala na pominięcie tego etapu, a co za tym idzie brak dodatkowych błędów związanych z rekonstrukcją. Parametryzacja pozwala na bezpośrednią analizę istotnych parametrów badanego procesu, przez co łatwiejsze jest użycie tych wyników w pętli sprzężenia zwrotnego sterowania. Przykłady rozpatrywane w tekście są opisane dla procesu grawitacyjnego opróżniania materiałów sypkich przechowywanych w silosach.
EN
The paper presents a new approach to monitoring changes of characteristic parameters of gravitational solids flow. Electrical Capacitance Tomography (ECT) is applied for non-invasive process monitoring. Artificial Neural Networks (ANN) are used to estimate important flow parameters knowing the measured capacitances. The proposed approach solves the ECT inverse problem in a direct manner and provides a rapid parameterization of the funnel flow. The simulation of the silo discharging process is performed relying on real flow behaviour obtained from the authors’ previous work. The simulated data are used to new approach testing and verification. The obtained results proved that proposed ANN-based method will allow for on-line gravitational solids flow monitoring.
PL
W artykule opisano nowe podejście do monitorowania zmian charakterystycznych parametrów przepływu grawitacyjnego. Do nieinwazyjnego monitorowania procesu stosowana jest Elektryczna Tomografia Pojemnościowa (ECT). Sztuczne Sieci Neuronowe wykorzystywane są do estymacji ważnych parametrów przepływu na podstawie mierzonych pojemności. Zaproponowane podejście pozwala na rozwiązanie problemu odwrotnego w ECT w sposób bezpośredni i umożliwia natychmiastową parametryzację przepływu kominowego. Symulacja procesu rozładowania silosu została wykonana na podstawie wyników wcześniejszych badań eksperymentalnych przeprowadzonych na rzeczywistym obiekcie. Dane symulacyjne wykorzystano do testowania i weryfikacji nowego podejścia. Uzyskane wyniki wykazały, iż zaproponowana metoda wykorzystująca Sztuczne Sieci Neuronowe pozwoli na monitorowanie on-line parametrów przepływu grawitacyjnego.
EN
A new approach to solve the inverse problem in electrical capacitance tomography is presented. The proposed method is based on an artificial neural network to estimate three different parameters of a circular object present inside a pipeline, i.e. radius and 2D position coordinates. This information allows the estimation of the distribution of material inside a pipe and determination of the characteristic parameters of a range of flows, which are characterised by a circular objects emerging within a cross section such as funnel flow in a silo gravitational discharging process. The main advantages of the proposed approach are explicitly: the desired characteristic flow parameters are estimated directly from the measured capacitances and rapidity, which in turn is crucial for online flow monitoring. In a classic approach in order to obtain these parameters in the first step the image is reconstructed and then the parameters are estimated with the use of image processing methods. The obtained results showed significant reduction of computations time in comparison to the iterative LBP or Levenberg-Marquard algorithms.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.