Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A System for the Estimation and Nowcasting of Precipitation (SEiNO) is being developed at the Institute of Meteorology and Water Management – National Research Institute. Its aim is to provide the national meteorological and hydrological service with comprehensive operational tools for real-time high-resolution analyses and forecasts of precipitation fields. The system consists of numerical models for: (i) precipitation field analysis (estimation), (ii) precipitation nowcasting, i.e., extrapolation forecasting for short lead times, (iii) generation of probabilistic nowcasts. The precipitation estimation is performed by the conditional merging of information from telemetric rain gauges, the weather radar network, and the Meteosat satellite, employing quantitative quality information (quality index). Nowcasts are generated by three numerical models, employing various approaches to take account of different aspects of convective phenomena. Probabilistic forecasts are computed based on the investigation of deterministic forecast reliability determined in real time. Some elements of the SEiNO system are still under development and the system will be modernized continuously to reflect the progress in measurement techniques and advanced methods of meteorological data processing.
EN
The MeteoGIS system developed at the Institute of Meteorology and Water Management – National Research Institute in Poland is a GIS-based system for real-time monitoring of weather and the generation of meteorological warnings. Apart from its monitoring features, it can also provide more advanced analysis, including SQL (Structured Query Language) queries and statistical analyses. Input data are provided mainly by the INCA-PL 2 nowcasting model which employs forecasts from the high-resolution AROME numerical weather prediction model and measurement data from the Polish weather radar network POLRAD and surface meteorological stations. As well as this, data from the PERUN lighting detection system are used. Ingestion of such data allows for the mitigation of risk from potentially hazardous weather phenomena such as extreme temperatures, strong wind, thunderstorms, heavy rain and subsequent impending floods. The following meteorological parameters at ground level are visualised in the MeteoGIS: (i) precipitation (accumulation and type), (ii) temperature, (iii) wind (speed and direction), (iv) lightning (locations and type). End users of the system are workers from civil protection services who are interested in shortterm warnings against severe weather events, especially area-oriented ones (related to districts, catchments, etc.). The reliability of visualised data is a very important issue, and from the MeteoGIS user’s point of view the improvement in data quality is a continuous process.
EN
Assimilation of 3d weather radar reflectivity to nwp model using ensemble Kalman filtering: methodology and experiment
EN
High temporal and spatial resolution of radar measurements enables to continuously observe dynamically evolving meteorological phenomena. Three-dimensional (3D) weather radar reflectivity data assimilated into the numerical weather prediction model has the potential to improve initial description of the atmospheric model state. The paper is concentrated on the development of radar reflectivity assimilation technique into COAMPS mesoscale model using an Ensemble Kalman Filter (EnKF) type assimilation schemes available in Data Assimilation Research Testbed (DART) programming environment. Before weather radar data enter into the assimilation system, the measurement errors are eliminated through quality control procedures. At first artifacts associated with non-meteorological errors are removed using the algorithms based on analysis of reflectivity field pattern. Then procedures for correction of the reflectivity data are employed, especially due to radar beam blockage and attenuation in rain. Each of the correction algorithms is connected with generation of the data quality characteristic expressed quantitatively by so called quality index (QI). In order to avoid transformation of data uncertainty into assimilation scheme only the radar gates successfully verified by means of the quality algorithms were employed in the assimilation. The proposed methodology has been applied to simulate selected intense precipitation events in Poland in May and August 2010.
PL
Teren województwa śląskiego ma kluczowe znaczenie w osłonie przeciwpowodziowej całego kraju, ponieważ tutaj znajdująsię obszary źródliskowe trzech największych polskich rzek. Decydujące znaczenie odgrywa szybkość pozyskiwania danych opadowych. Wymaganie to mogą spełnić dane z radaru meteorologicznego. Na bazie radaru funkcjonującego pod Katowicami opracowano działający operacyjnie system mo-nitoringu opadów.
EN
The area of the Sląsk province is of crucial importance for flood protection of the entire country because this is where are the well-head areas of the three biggest Polish rivers. The deciding meaning has the rate of data delivery. This requirement can be met by meteorological radar data. There has been developed an operational system of precipitation monitoring based on the radar situated in the vincinity of Katowice.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.