Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Essential hypertension is the world’s most prevalent cardiovascular disorder, however, its etiology remains poorly understood, making it difficult to study. The evidence suggests that inflammation can lead to the development of hypertension and that oxidative stress and endothelial dysfunction are involved in the inflammatory cascade. In this work, to investigate the influence of these factors on the essential hypertension development, a stochastic Petri net model has been built and then analyzed. To obtain appropriate initial marking and kinetic rate constants for the model, a simple heuristic has been developed. The application of this variant of Petri nets allowed for taking into account some important dependencies present in the modeled system what would be impossible in the case of qualitative models. This has enabled for an in-depth analysis of the studied phenomenon and a validation of biological conclusions previously obtained on the basis of a qualitative model.
EN
The complexity of many biological processes, which, thanks to the development of many fields of science, becomes for us more and more obvious, makes these processes extremely interesting for further analysis. In this paper a quantitative model of the process of macrophage differentiation, which is essential for many phenomena occurring in the human body, is proposed and analyzed. The model is expressed in the language of Petri net theory on the basis of one of the three hypotheses concerning macrophage differentiation existing in the literature. The performed analysis allowed to find an importance of individual factors in the studied phenomenon.
EN
Atherosclerosis as one of the crucial causes of cardiovascular diseases (CVD) is the leading reason of death worldwide. One of the contributing factors to this phenomenon is endothelial dysfunction, which is associated with the impact of various agents and their interactions. Tobacco smoke is one of the well known factors here. For better understanding of its significance a model of its impact on atherosclerotic plaque formation has been proposed. The model contains selected aspects of the influence of tobacco smoke, dual function of nitric oxide (NO) (influence of various mechanisms on NO bioavailability), oxidative stress which promotes low density lipoproteins oxidation, macrophages significance and other mechanisms leading to an aggravation of the endothelial disturbances. The model has been built using Petri nets theory and the analysis has been based on t-invariants. This approach allowed to confirm the important role of inflammation and oxidative stress in atherosclerosis development and moreover it has shown the considerable influence of the cigarette smoke.
4
Content available remote A Petri net based model of oxidative stress in atherosclerosis
EN
In this paper a Petri net based model of the process of oxidative stress in atherosclerosis is presented and analyzed. Model expressed in the language of Petri net theory have, on one hand, an intuitive graphical representation, and on the other hand their formal properties can be analyzed using rigorous mathematical methods. Moreover, the behavior of a net can be simulated what supports the process of model development and an interpretation of the results of the analysis. Both the analysis and the simulation can be supported by many freely available software tools. In the case of biological systems an analysis the t-invariants is especially important since they correspond to some elementary biological subprocesses. In this paper the results of such an analysis are presented. In particular, minimal t-invariants, MCT-sets and t-clusters are calculated, their biological meaning is determined and some biological conclusions are drawn.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.