Artykuł przedstawia szanse rozwoju do 2030 r. segmentu produkcji płyt IPM (ang. Insulated Metal Panels), płyt warstwowych w obustronnych okładzinach stalowych z rdzeniem izolacyjnym. Zawiera metodologię przeprowadzenia analizy rynku, omawia ich korelację z trendami zrównoważonego budownictwa oraz zestawia w formie wniosków działania, jakie muszą być wykonywane w celu uzyskania produktów optymalnych jakościowo.
EN
The article presents opportunities for the development of the production segment by 2030 IPM boards (Insulated Metal Panels), sandwich panels in double-sided steel cladding with an insulating core. It contains the methodology for conducting market analysis and discusses them correlation with sustainable construction trends and comparisons in the form of proposals for actions that must be carried out in order to obtain products of optimal quality.
In this second part of the article, we delve deeper into the research area initiated in the first part, focusing on the critical exploration of polylactide (PLA) modification to enhance thermal and mechanical properties in PLA-based materials, building upon the insights obtained from comprehensive structural and thermal analyses utilizing analytical methods such as infrared spectroscopy (FTIR), diffuse reflectance infrared spectroscopy (DRIFT), and thermoanalytical research (DRIFT, TG-DTG). A series of structural and thermal analysis research (TG-DTG, DSC, DRIFT) were performed for samples of polylactide (PLA), which is commonly used in additive technologies as a structural material. In total, four materials were considered, including two containing dyes with different colors, a material made of PLA recyclate and a graphene-modified PLA material. It was noted that PLA material reinforced with graphene phase (GRAFYLON®) retains the best thermal properties (TG-DTG), which results in its wider potential for processing, including further modification and usability in manufacturing vehicle structural elements. Recycled PLA material (ALFA+W) was characterized by a higher melting point (Tp ) by more than 20°C than other samples (DSC analysis), so it can be more useful in the production of structural elements operating and used at elevated temperatures.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Odpady pianki poliuretanowej pochodzące z produkcji wyrobów do izolacji cieplnej w budownictwie można poddawać recyklingowi na różne sposoby, ale wszystkie metody mają swoje zalety i wady. Z przeglądu literatury [1–10] wynika, że recykling fizyczny jest najbardziej pożądanym sposobem utylizacji. Zwraca się uwagę, że fizyczna metoda recyklingu, ze względu na prostą obsługę i stosunkowo aktywną aplikację, w krótkim czasie może okazać się skutecznym środkiem rozwiązującym problem odpadów stałych. Natomiast metoda recyklingu chemicznego, ze względu na większą trudność techniczną do poradzenia sobie z procesem chemicznym w dużej skali, wymaga dalszych prac doskonalących, ale w dłuższej perspektywie będzie to bardzo efektywna metoda odzyskiwania cennych surowców chemicznych.
EN
Polyurethane foam waste generated during the production of thermal insulation products in construction can be recycled in various ways, however there are advantages and disadvantages in all methods. The literature review shows that physical recycling is the most desirable method of disposal. It is noted that the physical method of recycling, due to its simple handling and relatively active application, in a short period of time may prove to be an effective means of solving the problem of solid waste. On the other hand, the chemical recycling method, due to the greater technical difficulty in dealing with a large-scale chemical process requires further improvement, but in the long run it will be a very effective method of recovering valuable chemical raw materials.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.