Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The impact of civil engineering course education on civil engineers is profound and crucial. Due to the hierarchical and ambiguous nature of quality assessment for flipped classroom teaching, there is an urgent demand for a rational and effective approach to conduct such assessments. This would enable the targeted formulation of instructional improvement methods based on assessment outcomes, ultimately elevating the quality of pedagogy. This study combines the analytic hierarchy process and fuzzy evaluation method. The fuzzy evaluation method is utilized to identify four primary evaluation factor sets, fourteen secondary judgment factor sets, and five evaluation outcome sets, with subsequent quantification of the assessment results. The analytic hierarchy process is employed to ascertain the weight coefficients of the evaluation factors. The comprehensive assessment model for flipped classroom teaching quality is established. The assessment results indicate that the overall quality of flipped classroom teaching in the civil engineering major at Anhui University of Science and Technology, conducted through the platform of Superstar Learning Hub, falls within the ‘Good’ category. The fuzzy comprehensive evaluation score for extracurricular learning quality is the lowest, and the weight proportion attributed to flipped classroom infrastructure is the highest. Consequently, several targeted improvement measures are proposed to enhance the quality of flipped classroom teaching.
EN
Liquid storage tank is widely used in the petrochemical industry, earthquake will lead to structural damage and secondary disasters, and damping control opens up a new way for seismic design of liquid storage tank. Considering soil-structure-fluid interaction, liquid sloshing dynamic behavior and material nonlinearity, a three-dimensional calculation model of shock absorption liquid storage tank is established by combining sliding isolation and displacement-limiting devices. The dynamic responses of the liquid storage tanks under the action of Kobe and El-Centro waves are investigated, and the influence of soil-structure interaction (SSI) on the dynamic response is discussed. The results show that the damping ratio is basically between 30% and 90%. After the SSI is considered, the damping ratio of liquid sloshing wave height is increased, while the damping ratio of the dynamic response of the liquid storage tank is decreased, and the change of elastic modulus has little effect on the damping effect. The sliding isolation with displacement-limiting devices has significant damping control effects on the liquid sloshing wave height and the dynamic responses of the liquid storage tank.
EN
The research on deformation zoning mechanism of tunnel surrounding rock is of great significance for ensuring safe production and disaster prevention in coal mines. However, the traditional deformation zoning theory of tunnel surrounding rock uses the ideal strain softening model as the criterion for judging the zoning type of all tunnel surrounding rock, ignoring the difference between the deformation zoning type of a specific actual tunnel and the basic zoning type of surrounding rock. In order to study the method for determining the actual deformation zoning type of tunnel surrounding rock, the formation mechanism of the actual deformation zoning of tunnel surrounding rock has been revealed. Combined with engineering examples, a method for determining the actual deformation zoning type and boundary stress of specific tunnel surrounding rock has been proposed. The results show that the boundary stress and position of the actual deformation zone are determined by the peak strength fitting line, residual strength fitting line, support strength line, and the position of the circumferential and radial stress relationship lines of each deformation zone. The actual boundary stress of each zone of tunnel surrounding rock is ultimately only related to the basic mechanical properties of the tunnel surrounding rock and the in-situ stress field. The research results can provide reference for disaster management of underground engineering, stability evaluation of surrounding rock, and support scheme design.
EN
Underground concrete structures are affected by groundwater, the effects of which are different from those of stress environments experienced by ground engineering concrete structures. This study experimentally and theoretically investigates the mechanical behavior, permeability evolution, and deformation failure mechanism of lining concrete under pore water pressure. Results show that an increase in pore water pressure promoted the coupling of seepage and stress fields in concrete. This caused the microcracks to propagate further, which led to a decrease in concrete strength and elastic modulus. Through triaxial compression infiltration, the concrete successively underwent initial compaction, linear elastic deformation, and nonlinear deformation after yielding. Accordingly, its permeability exhibited three trends: gradual decrease, stable development, and a sharp increase. The change in permeability was closely related to the number of pores and the development of microcracks in concrete. The concept of primary pore strain was proposed according to the characteristics of deformation and failure. Moreover, a triaxial compression infiltration constitutive model was derived for concrete based on the principle of effective stress. This model considers the influence of pore water pressure and the initial compaction characteristics. This study can be used to guide the design of lining concrete structures in underground engineering.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.