Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Fiber metal laminates (FMLs) provide lucrative solutions for lightweight commercial aircrafts. They are a class of hybrid composites made from interlaced layers of thin metals and fiber-reinforced adhesives. The present investigation deals with the effects of hybridization and stacking sequence of aluminum sheets (A), jute (J) and Kevlar (K) fibers on the flexural, impact, hardness and tensile properties. Three distinct configurations A/K/A/K/A/K/A (I), A/J/A/K/A/J/A (II) and A/K/J/A/J/K/A (III) of FMLs have been chosen and designed for evaluation of their mechanical attributes. Comparative analysis shows that configuration A/K/J/A/J/K/A (III) offers superior results for flexural, impact, shore D hardness and tensile properties due to hybridization and appropriate stacking sequence with their maximum values as 495 N, 10.4 J, 85.4 and 325.6 MPa, respectively. Outer Kevlar layers supported by the subsequent jute fiber layers enable the configuration A/ K/J/A/J/K/A (III) to resist better when subjected to high mechanical load. Moreover, the microstructural analysis revealed that the jute fibers make a stronger bond with aluminum and Kevlar fibers which prevents FMLs from delamination and early failure.
EN
Squeeze casting has emerged as an attractive alternative for the casting of aluminum alloys to boost the mechanical and microstructural attributes. However, the alloys practiced in structural applications where ductility is considered a key characteristic, additional heat treatment processes are opted after casting. Considering the industrial applications of Al7050, the current study focused on manufacturing defect-free casting for structural applications. For this purpose, three key process variables including squeeze pressure (SP), melt temperature (MT) and die temperature (DT) have been preferred to improve the percentage elongation, ultimate tensile strength and hardness with minimal casting defects. Annealing treatment is preferred to further advance the ductile behavior of the squeeze-casted Al7050 alloy. Among different process variables, SP has a significant contribution in raising the mechanical properties followed by MT and DT. Taguchi-based Grey relational analysis (GRA) has been used to attain the optimal level of input parameters (SP = 135 MPa, MT, 740 °C and DT = 240 °C) for the superior microstructural and mechanical attributes simultaneously. Microstructural investigations revealed that application of high SP and DT with reasonable MT significantly improved the grain structure and minimized the typical casting defects including micro-voids, porosity and shrinkage cavities. Annealing treatment has been observed productive for improving ductility and reducing the casting defects specifically micro-porosity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.