Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Applications of β-cyclodextrins in textiles
EN
In this paper, the general features of β-cyclodextrin and their applications in the textile industry have been reviewed. The use of β-cyclodextrin in the textile industry is of great significance due to its wide range of application. One of the key aspects is the attachment technique of β-cyclodextrin to the textile's surface. This review deals with this in depth. Some quantification and characterization methods of Textile-β-cyclodextrin are discussed. In the last few years, the new direction in textile research is the functionalisation of textile systems. It is believed that β-cyclodextrin will play a very important role in these new developments. β-cyclodextrin can act as a host for various guest molecules. This enables the development of fabrics that release chemical compounds such as fragrances and antimicrobial agents. It is concluded that there are many possibilities for the development of new textile products with advanced properties based on β-cyclodextrin.
2
Content available remote Intensification of mass transfer in wet textile processes by power ultrasound
EN
In industrial textile pre-treatment and finishing processes, mass transfer and mass transport are often rate-limiting. As a result, these processes require a relatively long residence time, large amounts of water and chemicals, and are also energy-consuming. In most of these processes, diffusion and convection in the inter-yarn and intra-yarn pores of the fabric are the limiting mass transport mechanisms. Intensification of mass transport, preferentially in the intra yarn pores, is key to the improvement of the efficiency of wet textile processes. Power ultrasound is a promising technique for accelerating mass transport in textile materials. In this paper, the intensification of mass transfer in textiles under the influence of ultrasound on the basis of a total system approach is described. EMPA 101-test fabric was selected as a model for the cleaning process. This study focuses on two aspects, the mechanism of the ultrasound-assisted cleaning process and the effect of the presence of the cloth on the ultraso und wave field generated in a bath. It has been found that the dissolved gas content in the system plays a dominant role in the cleaning process. The cleaning effects observed are explained by two different mechanisms: small-amplitude acoustic bubble oscillations and micro-jets (resulting from the collapse of acoustic bubbles in the boundary layer between the fabric and the bulk fluid) that give rise to convective mass transfer in the intra-yarn pores. It has also been observed that the overall power consumption of the system varies with the position of the fabric in the acoustic field. This variation is explained on the basis of a model involving the specific flow resistance of the fabric and the physical properties of the standing waves.
3
Content available remote Textile slow-release systems with medical applications
EN
In the development of medical drug delivery systems, attention has been increasingly focused on slow- or controlled delivery systems in order to achieve an optimal therapeutic effect. Since the administration of drugs often requires a defined or minimum effective dosage in the human body, more conventional delivery systems such as tablets require relatively high doses, which can result in undesired toxic effects. Subsequent degradation of the drug in the human body will result in a drug concentration below the minimum effective level. Furthermore, there are situations where oral administration is less advisable, such as in cases of prolonged treatment or with people that are forgetful, which again results in ineffective treatment. Textile slow-release systems have the potential to overcome these negative aspects. Drugs containing transdermal patches for ex-vivo applications are already familiar; however, this paper will not deal with such applications, but with more advanced in-vivo textile slow-release systems. Due to enormous progress over the years in the fields of supramolecular chemistry, nanotechnology, and polymer science & technology, a number of promising drug delivery technologies have been developed. This review will focus on the opportunities of textiles bearing cyclodextrins, aza-crown ethers or fullerenes, as well as ion-exchange fibres, drug-loaded hollow fibres, textiles treated with nanoparticles and fibres with bioactive compounds in their embodiment. In this paper, the delivery systems will be discussed and compared in terms of biostability, biodegradability, controllability, toxicity, carcinogenicity, interface reactions, material costs and the fabrication process.
4
Content available remote Bubble size distribution of foam
EN
A procedure based upon image analysis has been adopted to study the influence of several physical parameters on bubble size in foam. A procedure has been described to account for the distribution of bubble size. Foam was generated in a rotor-stator mixer. In the present research, the nature of the surfactant, liquid viscosity, solid phase content, and rotational speed of the mixer were varied. All parameters were found to influence the bubble size and its distribution to a certain extent. These effects were qualified experimentally.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.