Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents a study on the multi-creteria decision making in the external cylindrical grinding process of 65G steel. An aluminum oxide grinding wheel was used in the experimental process. The experimental matrix was designed according to the Taguchi method with twenty-seven experiments. Five parameters were used to design the experimental matrix including workpiece velocity, feed rate, depth of cut, dressing feed rate, and dressing depth of cut. The surface roughness and Material Removal Rate (MRR) were determined for each experiment. This is the first time that the Weighted Aggregates Sum Product ASsessment (WASPAS) and Proximity Indexed Value (PIV) methods were used to make the multi-criteria decision for grinding process. The weighs of ouput criteria (surface roughness and MRR) were determined by Entropy method. Both WASPAS and PIV methods determined an experiment that simultaneously ensured the “minimum value” of surface roughness and “maximum value” of MRR.
EN
This paper presents a study to ensure the minimum values of Ra and Rz, and the maximum value of MRR when external cylindrical grinding by the PSI method. The experiments were performed according to the orthogonal Taguchi L9 matrix with the input parameters including workpiece speed, feed rate, and depth of cut in the conventional grinding machine. Analysis of experimental results by Pareto chart showed that the feed rate and the depth of cut most influence on Ra and Rz, respectively. Feed rate and depth of cut all have a great influence on MRR. Meanwhile, the workpiece speed has a negligible effect on all three output parameters. The research results showed that to obtain the minimum values of Ra and Rz, and maximum of MRR, the workpiece speed, feed rate, and depth of cut were 400 rev/min 37.7 mm/min, 0.09 mm/rev, and 0.02 mm, respectively.
EN
In this study, TOPSIS and PIV methods were applied for multi-criteria decision making in hard turning process. Experiments have been conducted in accordance with an experimental matrix designed by the Taguchi method with a total of twenty-seven experiments. At each experiment, the values of coolant concentration, nose radius, coolant flow, cutting velocity, feed rate and depth of cut have been changed. Surface roughness, flank wear and roundness error have been selected as output criteria. The weights of criteria have been determined by three methods, inclusive of Equal weight, ROC weight and Entropy weight. The combination of multi-criteria decision-making methods with three weighting methods gives six ranking options of the experiments. The purpose of ranking the experiments is to find the experiment at which the three output parameters are ensured to have the minimum value simultaneously.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.