Carboxymethyl-cellulose has been labelled with a stable free radical by reaction with 4-aminotempo in the presence of a coupling agent (EEDQ). The spin-labelled cellulose is highly stable, no leaking being noticed after months at room temperature. EPR spectroscopy was used as a main tool to study the wettability of such a material. The EPR spectrum of the dry spin-labelled cellulose shows the expected anisotropy, while addition of several solvents (acetone, ethyl acetate, DCM, methanol, toluene, PEG 200) induces the splitting of the spectrum into a two component system. Thus, the EPR spectrum is composed of a mobile component superimposed onto an immobilized one. Addition of water leads to a monocomponent isotropic spectrum. These data clearly indicate the presence of two types of sites to which the spin-label is attached. Variable temperature EPR spectra showed that an increase of temperature results in an increase in the mobility of the spin-label. Deposition of plain or spin-labelled gold nanoparticles on the cellulose fibres also affects the structure of the polymeric chain, as seen by changes in the EPR spectra.
Starting from 9-amino-N-picrylcarbazole, the nitro-, cyano-, bromo- and dibromo-derivatives of the title compound, and the corresponding free radicals, were synthesized. The pK values and the redox properties of the compounds synthesized were reported.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.