We consider a heat conduction problem S with mixed boundary conditions in an n-dimensional domain with regular boundary and a family of problems Sα with also mixed boundary conditions in , where α > 0 is the heat transfer coefficient on the portion of the boundary Г1. In relation to these state systems, we formulate Neumann boundary optimal control problems on the heat flux q which is definite on the complementary portion Г2 of the boundary of Ω. We obtain existence and uniqueness of the optimal controls, the first order optimality conditions in terms of the adjoint state and the convergence of the optimal controls, the system state and the adjoint state when the heat transfer coefficient α goes to infinity. Furthermore, we formulate particular boundary optimal control problems on a real parameter λ, in relation to the parabolic problems S and Sαα
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.