Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Internet connectivity in WiMAX networks, along with various applications, is increasing rapidly, so the connectivity of internet and data transfer speed are always challenges for effective data transmission in wireless networks. Several factors affect the performance of networks. One important factor is to choose a suitable frame period for effective data transmissions. The performance of different frame periods with Round Robin and Strict Priority is evaluated in this work. A frame period in Round Robin performs better than a Strict Priority in terms of through-put, but a Strict Priority performs better in terms of drop rates. This paper also demonstrates that an effective frame period, when combined with a proper bandwidth allocation algorithm, yields better results. This work gives the analysis that Round Robin performs 83.8847% better while Strict Priority performs 86.0020% better than the earliest deadline first algorithms for 10 subscriber stations in terms of throughput. This work is helpful to researchers and industrialists for actual implementations in WiMAX networks.
EN
Artificial Intelligence has been touted as the next big thing that is capable of altering the current landscape of the technological domain. Through the use of Artificial Intelligence and Machine Learning, pioneering work has been undertaken in the area of Visual and Object Detection. In this paper, we undertake the analysis of a Visual Assistant Application for Guiding Visually-Impaired Individuals. With recent breakthroughs in computer vision and supervised learning models, the problem at hand has been reduced significantly to the point where new models are easier to build and implement than the already existing models. Different object detection models exist now that provide object tracking and detection with great accuracy. These techniques have been widely used in automating detection tasks in different areas. A few newly discovered detection approaches, such as the YOLO (You Only Look Once) and SSD (Single Shot Detector) approaches, have proved to be consistent and quite accurate at detecting objects in real-time. This paper attempts to utilize the combination of these state-of-the-art, real-time object detection techniques to develop a good base model. This paper also implements a ’Visual Assistant’ for visually impaired people. The results obtained are improved and superior compared to existing algorithms.
EN
Cloud computing has emerged as a significant technology domain, primarily due to the emergence of big data, machine learning, and quantum computing applications. While earlier, cloud computing services were focused mainly on providing storage and some infrastructures/ platforms for applications, the need to advance computational power analysis of massive datasets. It has made cloud computing almost inevitable from most client-based applications, mobile applications, or web applications. The allied challenge to protect data shared from and to cloud-based platforms has cropped up with the necessity to access public clouds. While conventional cryptographic algorithms have been used for securing and authenticating cloud data, advancements in cryptanalysis and access to faster computation have led to possible threats to the traditional security of cloud mechanisms. This has led to extensive research in homomorphic encryption pertaining to cloud security. In this paper, a security mechanism is designed targeted towards dynamic groups using public clouds. Cloud security mechanisms generally face a significant challenge in terms of overhead, throughput, and execution time to encrypt data from dynamic groups with frequent member addition and removal. A two-stage homomorphic encryption process is proposed for data security in this paper. The performance of the proposed system is evaluated in terms of the salient cryptographic metrics, which are the avalanche effect, throughput, and execution time. A comparative analysis with conventional cryptographic algorithms shows that the proposed system outperforms them regarding the cryptographic performance metrics.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.