Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The quality of paleoenvironmental reconstruction based on speleothem records depends on the accuracy of the used proxies and the chronology of the studied record. As far as the dating method is concerned, in most cases, the best solution is the use of the U-series method to obtain a precise chronology. However, for older periods (i.e., over 0.5 Ma), dating has become a serious challenge. Theoretically, older materials could be dated with the U-Pb dating method. However, that method requires a relatively high uranium content (minimum of several ppm), whereas typical speleothems from Poland (and all of Central Europe) have uranium concentrations below 0.1 ppm. Because the materials in Polish caves are problematic, we applied oxygen isotope stratigraphy (OIS) as a tool for speleothem dating. By using OIS as an alternative tool to create a chronology of our flowstone, it was found that the studied flowstone crystallized from 975 to 470 ka with three major discontinuities, so obtained isotopic record can be correlated with oxygen isotopic stages from MIS 24 to MIS 12. The observed isotopic variability was also consistent and confirmed with the petrographic observations of the flowstone.
EN
The origin and age of cave deposits, as well as palaeogeographical changes in the Bystrej catchment during the last ca. 250 ka, were reconstructed in Magurska, Kasprowa Niżnia, Goryczkowa, Kalacka and Bystrej caves (the Bystrej Valley). The reconstruction is based on the study of corrosive forms, heavy mineral analyses and U-series dating of speleothems. Two generations of palaeoflows were distinguished by observations of scallops and heavy mineral analyses. In the older stage, now abandoned caves drained massifs surrounding the Bystrej Valley and part of an adjacent valley. The direction of palaeoflow changed as a result of the water capture after Kasprowa Niżnia Cave came into being. In the later stages, the evolution of cave systems was controlled by glaciation-deglaciation cycles. Probably at this time, some caves located in the lowest parts of the massifs also started to be formed. U-series speleothem dating allows the determination of five phases of speleothem deposition: ca. 220–150 ka, ca. 135–105 ka, ca. 95–70 ka, ca. 40–23 ka and during the Holocene.
EN
Tectonic research and morphological observations were carried out in six caves (Kalacka, Goryczkowa, Kasprowa Niżna, Kasprowa Średnia, Kasprowa Wyżnia and Magurska) in the Bystra Valley, in the Tatra Mountains. There are three cave levels, with the youngest active and the other two inactive, reflecting development partly under epiphreatic and partly under phreatic conditions. These studies demonstrate strong control of the cave pattern by tectonic features, including faults and related fractures that originated or were rejuvenated during uplift, lasting from the Late Miocene. In a few local cases, the cave passages are guided by the combined influence of bedding, joints and fractures in the hinge zone of a chevron anticline. That these cave passages are guided by tectonic structures, irrespective of lithological differences, indicates that these proto-conduits were formed by “tectonic inception”. Differences in the cave pattern between the phreatic and epiphreatic zones at a given cave level may be a result of massif relaxation. Below the bottom of the valley, the effect of stress on the rock mass is related to the regional stress field and only individual faults extend below the bottom of the valley. Thus in the phreatic zone, the flow is focused and a single conduit becomes enlarged. The local extension is more intense in the epiphreatic zone above the valley floor and more fractures have been sufficiently extended to allow water to flow. The water migrates along a network of fissures and a maze could be forming. Neotectonic displacements (of up to 15 cm), which are more recent than the passages, were also identified in the caves. Neotectonic activity is no longer believed to have as great an impact on cave morphology as previously was thought. Those faults with displacements of several metres, described as younger than the cave by other authors, should be reclassified as older faults, the surfaces of which have been exposed by speleogenesis. The possible presence of neotectonic faults with greater displacements is not excluded, but they would have had a much greater morphological impact than the observed features suggest.
EN
The paper deals with the origin of caves in Sokola Hill (Polish Jura). The caves abound in solution cavities in the walls and ceilings, many of them arranged hierarchically, some others arranged in rising sets. Blind chimneys and ceiling half-tubes are also present. These features collectively indicate that the caves originated under Phreatic conditions by an ascending flow of water, probably of elevated temperature. Phreatic calcite spar, crystallized from water of elevated temperature, lines the cave walls. During the formation of the caves the Jurassic limestone aquifer was confined by impermeable cover. Three possible scenariosfor the origin of the caves are suggested. The firstscenario pointsto formation of the caves during the Palaeogene prior to the removal of the confining Cretaceous marls. The second connectsthe origin of the caves with regional palaeoflow driven by tectonic loading by Carpathian nappes to the south, while the third refers to local topographically driven palaeoflow. Both the second and third scenarios assume that the Polish Jura had a cover of Miocene impermeable clastics. All the scenarios account for the origin of the caves in Sokola Hill and explain the common occurrence of ascending caves throughout the Polish Jura. In the subsequentstages of evolution the caves were partly filled with various deposits. Conglomerates composed of Jurassic limestone clasts, quartz sands and sandstones are preserved as erosional remnants, locally covered by or interfingered with calcite flowstones. The clastic deposits were laid down by surface streams that invaded the caves earlier than 1.2 Ma. The caves were not invaded by water from Pleistocene glaciers, which is proved by the assemblage of heavy minerals in the cave clastics.
EN
Lodowa Cave in Ciemniak, which belongs to the dynamic ice cave type, contains the biggest perennial block of cave-ice in the Tatra Mountains. The ice represents congelation type, since it originates from freezing of water which infiltrates the cave. Two generations of ice have been recognized in this cave. They are divided by the distinct unconformity. The ice building both generations is layered. Two moths which were found in the younger generations were sampled and dated by 14C method yielding 195 ± 30 and 125 ± 30 years. Bearing in mind the position in the section and the fact that the cave ice has waned since the 20s of the last century, the age is 1720-1820 AD and 1660-1790 AD respectively. It proves that the ice was formed during the Little Ice Age. Hence, the erosion boundary which underlies this generation records the degradation of ice before the Little Ice Age most probably during the Medieval Warm Period. The ice volume in the cave was substantially smaller before the Little Ice Age than it is today, despite the clear tendency to melting, which has been recognized since 20s of the last century. The older generation of ice is supposed to have its origins in a cold stage between the Atlantic period and the Medieval Warm Period.
6
Content available remote Kras tatrzański - rozwój wiedzy w ostatnich trzydziestu latach
EN
The paper presents the latest results of studies on karst phenomena in the Tatra Mountains. Three periods of pre-Neogene karstification have been identified, that is Middle to Late Triassic, Albian and Palaeocene to Early Eocene. Up to now, 1168 caves have been registered in the Tatra Mts: 805 in Poland and 363 in Slovakia. Their total length exceeds 175 km. Wielka Śnieżna Cave from Mt. Małołączniak (Czerwone Wierchy Massif), with its total length of more than 23 km and vertical extent 824 m, is the deepest and longest of those hitherto found in this region. In the recent years the idea on hydrothermal origin of a number of caves in this area has been put forward. Other caves formed under phreatic conditions display numerous phreatic loops. Therefore, spatial distribution of these caves does not mark the former position of a water-table. The direction of palaeoflow was generally similar to that of the modern karst drainage. The U-series dating of speleothems has revealed that the phreatic stage in development of some caves ended earlier than 1.2 Ma. The mean rate of valley deepening during the last 200 ka was estimated at 0.2-0.3 m/ka. The microbial origin of moonmilk deposits, which are very common in the Tatra caves, has been put forward. The analyses of speleothem isotopic composition show that not only temperature but also migration path of feeding water can govern the delta exp.18 values. The palaeontological and archaeological findings in the Tatra caves are scarce. Presently, the cave lion bones and sculls accompanied by numerous bones of a cave bear were found in a Slovak cave (Medvedia jaskyňa). Dye-tracing tests, both in Polish and Slovak parts of the mountains, have been conducted to confirm connections between particular sink-holes and karst springs. The stable isotopic composition of karst-spring water and water residence time based on tritium content have been studied as well.
EN
Czarna Cave represents phreatic cave with multiple loops. No cave level developed at the water table was detected. The cave was later modified by invasion vadose waters and breakdown processes. The phreatic paleoflow directions were analyse from the asymmetry of scallops. The paleoflow was directed from the east to the west, that is in a direction of the Kościeliska Valley. Therefore, this valley represented the main discharge zone of the region during the formation of Czarna Cave.
PL
Autorzy wykonali analizę rozmieszczenia przestrzennego korytarzy Jaskini Czarnej. Kierunek paleoeoprzepływów zrekonstruowano na podstawie asymetrii zagłębień wirowych (scallops’, Tabela 1; por. Rudnicki, 1960; Curl, 1966; Lauritzen & Lundberg, 2000 i literatura tam cytowana). Układ korytarzy ciągu głównego Jaskini Czarnej oraz ich poprzeczne przekroje dowodzą, że jaskinia ta rozwijała się jako system wielu, połączonych z sobą pętli freatycznych (Ford & Ewers, 1978; Ford & Williams, 1989; Ford, 2000). Deniwelacja pojdyńczych pętli sięga kilkudziesięciu metrów. Część korytarzy o poziomym rozwinięciu, np. Korytarz Mamutowy i Korytarz Żyrafo wy, stanowiła zapewne korytarze typu obejść lub izolowanych wady cznych rozcięć (bypass, isolated vadose trench’, Ford & Ewers, 1978; Ford & Williams, 1989; Ford, 2000). Niestety późniejsze zmiany morfologii jaskini wywołane przez procesy zawaliskowe uniemożliwiają precyzyjne ustalenie punktów przejścia pomiędzy strefą freatyczną i wadyczną(Fig. 3; por. Palmer, 1987, 2000). Zebrane obserwacje świadczą, że główny ciąg Jaskini Czarnej powstał na zróżnicowanej głębokości poniżej piezometrycznego zwierciadła wód krasowych (Fig. 4, 5). Stanowi on więc jedno genetyczne piętro (cave storey) rozwinięte w warunkach freatycznych (por. Ford, 2000). Nie można więc wyróżniać w jego obrębie tzw. poziomów jaskiniowych (cave levels) odpowiadających dawnemu poziomowi zwierciadła wód i w przybliżeniu dawnemu po-ziomowi bazy erozyjnej. Powyższy pogląd neguje dotychczasowe koncepcje dotyczące rozwoju Jaskini Czarnej (Wójcik, 1966, 1968; Rudnicki, 1967; Grodzicki, 1970, 1991; patrz też Tabela 2), które opierały się w większym lub mniejszym stopniu na teorii Swinnertona (1932). Teoria ta zakłada rozwój jaskiń krasowych jako w przybliżeniu horyzontalnych ciągów powstających w pobliżu zwierciadła wód. Freatyczne ciągi Jaskini Czarnej były już po osuszeniu modyfikowane przez wadyczne przepływy, zapewne o charakterze wód inwazyjnych pochodzących z topnienia pól firnowych lub lodowców plej stoceńskich (por. Głazek etai., 1977, 1979; Głazek 1997). Wody te ukształtowały pionowe studnie i kominy młodsze od głównego ciągu i w wielu miejscach rozcinające go. Spowodowały także lokalne wadyczne modyfikacje starszych freatycznych ciągów (Fig. 6, patrz też Fig. 9). Analiza kierunków paleoprzepływów w Jaskini Czarnej wykonana na podstawie obserwacji zagłębień wirowych w dwunastu miejscach w jaskini wykazała jednoznacznie, że pierwotnie przepływ ten skierowany był ze wschodu ku zachodowi (a dokładnie z północnego wschodu ku południowemu zachodowi) czyli ku Dolinie Kościeliskiej (Fig. 2, 7, 8, 9). Dlatego nieaktualne są dotychczasowe poglądy dotyczące kierunków paleoprzepływów w tej jaskini, wyrażane najbardziej zdecydowanie przez Grodzickiego (1970, 1991). Powyższe obserwacje wskazują, że w czasie aktywnego freatycznego przepływu poprzez główny ciąg Jaskini Czar-nej, czyli w neogenie (por. Nowicki et al., 2000), główna strefa odwodnienia była położona w Dolinie Kościeliskiej w rejonie dzisiejszej Polany Pisanej. Świadczy to, że już wówczas dolina ta była jedną z najniżej wciętych dolin Tatr Zachodnich. Można zatem przyjąć, że Jaskinia Czarna stanowi dawny, nieaktywny odpowiednik dzisiejszego systemu Lodowego Źródła. Prowadziła ona bowiem wodę z masywu Czerwonych Wierchów ku zachodowi, w stronę Doliny Kościeliskiej, tak jak ma to miejsce współcześnie w tym systemie.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.