Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
For more than a decade many researchers have been developing new ways to produce laminated composites. In this paper, aluminum/titanium/steel multi-laminated composites were fabricated by the cross accumulative roll bonding (CARB) process, and effects of different rolling passes on microstructure, and mechanical properties were investigated. As the number of rolling passes increased, in spite of having no voids and cracks, more instabilities were observed on titanium and steel layers. With regard to mechanical properties, by increasing the rolling passes, the values of ultimate and yield strength, as well as elongation fell, because of the non-uniform distribution of hard layers within the aluminum matrix. Based on scanning electron microscopy (SEM) images, both ductile and cleavage modes of fracture were observed on fracture surfaces. Furthermore, with an increase in the number of rolling passes, the values of fracture toughness pertaining to the crack initiation declined on account of the increased probability of delamination. Plus, the trend of the R-curves was mainly downward due to the growing number of interfaces within the matrix by increasing the number of passes; nonetheless, the upward trend of these curves may be attributed to the ductile Al matrix in which the path of cracks can be bridged. Also, based on the results of wear tests, different wear mechanisms such as adhesion, abrasion, and delamination were observed, and with an increase in the number of rolling passes, the amount of weight loss showed a decline which was due to the rise of hardness concerning the strain-hardened layers.
EN
Purpose: In wound ballistics, skin has obvious blocking effect in the biological target penetration of projectiles. An analytical description of skin mechanical properties under compression can set the basis for the numerical simulation and the evaluation of blocking effect. Methods: In this study, an improved three-parameter solid visco-elastic model was proposed to describe the skin creep phenomenon. And then combined with Maxwell and Ogden model, a new nonlinear skin constitutive model, consisting of hyper-elastic unit, creep unit and relaxation unit in parallel, was established. Here, we examine the material properties of freshly harvested porcine skin in compression at strain rates from 0.01/s to 4000/s. Results: The model is verified by comparison with the experimental results by our test and that in the literature at different strain rates. Conclusions: It shows that calculated results of the constitutive model agree well with the experiment data at extremely low to high strain rates, which is useful for the description of the heterogeneous, nonlinear viscoelastic, relaxation and creep mechanical response of skin under compression.
EN
Flotation optimal conditions and mechanism of regulator lime, isopentyl xanthate and butyl xanthate on pyrrhotite were investigated by flotation test, contact angle, zeta potential and infrared spectroscopic analysis. It is found that there is a certain relationship between the regulator lime and the collector isopentyl xanthate. The results of flotation indicate that lime can indeed inhibit pyrrhotite, and isopentyl xanthate can decrease the depression effect of lime on pyrrhotite in low alkalinity. The results of adsorption mechanism of lime and isopentyl xanthate show that after lime adsorbed on the pyrrhotite surface, Ca 2+inhibit the adsorption of collector with the form of Ca(OH) 2 precipitates. Compared with butyl xanthate, isopentyl xanthate could reduce the generation of hydrophilic Ca(OH) 2 and generate less hydrophilic CaCO3 as well to decrease the negative effect of gold-bearing pyrrhotite flotation depressed by lime.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.