Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The release of low-cost dual-frequency (DF) global navigation satellite system (GNSS) modules provides an opportunity for low-cost precise positioning to support autonomous vehicle applications. The new GNSS modules support the US global positioning system (GPS) L1C/L2C or L5 civilian signals, the Russian GNSS Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS) L1/L2, Europe’s GNSS Galileo E1/E5b, and Chinese GNSS BeiDou B1/B2 signals. The availability of the DF measurements allows for removal of the ionospheric delay, enhancing the obtained positioning accuracy. Unfortunately, however, the L2C signals are only transmitted by modernized GPS satellites. This means that fewer GPS DF measurements are available. This, in turn, might affect the accuracy and the convergence of the GPS-only precise point positioning (PPP) solution. Multi-constellation GNSS PPP has the potential to improve the positioning accuracy and solution convergence due to the high redundancy of GNSS measurements. This paper aims to assess the performance of real-time quad-constellation GNSS PPP using the low-cost u-blox Z9D-F9P module. The assessment is carried out for both open-sky and challenging environment scenarios. Static, simulated-kinematic, and actual field-kinematic trials have been carried out to evaluate real-time PPP performance. Pre-saved real-time precise orbit and clock products from the Centre National d’Etudes Spatiales are used to simulate the real-time scenario. It is shown that the quad-constellation GNSS PPP using the low-cost u-blox Z9DF9P module achieves decimeter-level positioning accuracy in both the static and simulatedkinematic modes. In addition, the PPP solution convergence is improved compared to the dual- and triple-constellation GNSS PPP counterparts. For the actual kinematic trial, decimeter-level horizontal positioning accuracy is achieved through the GPS + GLONASS + Galileo PPP compared with submeter-level positioning accuracy for the GPS + GLONASS and GPS + Galileo PPP counterparts. Additionally, submeter-level vertical positioning accuracy is achieved through the GPS + GLONASS + Galileo PPP compared with meter-level positioning accuracy for GPS + GLONASS and GPS + Galileo PPP counterparts.
2
EN
This study assesses the precision of zenith tropospheric delay (ZTD) obtained through triple-constellation global navigation satellite system (GNSS) precise point positioning (PPP). Various ZTD estimates are obtained as by-products from GPS-only, GPS/Galileo, GPS/BeiDou, and triple-constellation GPS/Galileo/BeiDou PPP solutions. Triple-constellation GNSS observations from a number of globally distributed reference stations are processed over a period of seven days in order to investigate the daily performance of the ZTD estimates. The estimated ZTDs are then validated by comparing them with the International GNSS Service (IGS) tropospheric products and the University of New Brunswick (UNB3m) model counterparts. It is shown that the ZTD estimates agree with the IGS counterparts with a maximum standard deviation (STD) of 2.4 cm. It is also shown that the precision of estimated ZTD from the GPS/Galileo and GPS/Galileo/BeiDou PPP solutions is improved by about 4.5 and 14%, respectively, with respect to the GPS-only PPP solution. Moreover, it is found that the estimated ZTD agrees with the UNB3m model with a maximum STD of 3.1 cm. Furthermore, the GPS/Galileo and GPS/Galileo/BeiDou PPP enhance the precision of the ZTD estimates by about 6.5 and 10%, respectively, in comparison with the GPS-only PPP solution.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.