Shadow removal is a critical process for any computer vision based vehicle detection system. Traditional shadow removal methods are not sufficiently robust since they frequently remove parts of the vehicles together with the shadows. For robust shadow identification and removal, shadow information must be compiled at every step of the computer vision chain from the time the shadow enters the scene until it finally disappears. In this paper we present a shadow removal algorithm that preserves the compactness of the vehicles' object masks while allowing for dealing with changing illumination conditions, long and broken shadows and multiple shadows at night. The method is based on a complex shadow model which includes, among others, information regarding: luminance and chromaticity, morphology, dynamics and spatial relations analysis.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The melting process in the EAF is normally controlled via fixed operating patterns; the aim of this practice is to achieve the optimum conditions at the tapping. Industrial practice indicates that sometimes deviations appear, so it is not uncommon to obtain very high or low C contents at melt-down promoting bad slag foaming conditions, rising electrical consumption and tap-to-tap times. As a consequence the productivity decreases and the running cost increases. The slag foaming process in the EAF has been studied analyzing process data, such as: EAF electrical consumption, steel oxygen activity, steel and slag composition, temperature, acoustic noise signal, Total Harmonics Distortion (THD) of arc voltage and current. A dynamic model has been developed, with the aim of controlling the oxygen and carbon injection process in order to achieve the target of composition, O activity and temperature at tapping while maintaining a good foaming quality during the process leading to a lower electrical consumption and tap to tap time. The model starts working after the first C sampling measurement takes places, and from that time it controls the oxygen and carbon injection. This model has been integrated in the plant as part of the EAF automatic control system.
PL
Wytapianie w piecu łukowym zwykle sterowane jest przy użyciu wyznaczonych modeli; celem tej praktyki jest osiągnięcie optymalnych warunków przy spuście. Praktyka przemysłowa wskazuje, że mogą wystąpić odchylenia w zawartości węgla przy złych warunkach spieniania żużla podczas wytopu, wzrastającym zużyciu energii elektrycznej i czasie wytopu. Konsekwencją jest spadek wydajności i wzrost kosztów. Proces pienienia się żużla w piecu łukowym zbadany został przez analizę danych takich jak, zużycie energii, aktywność tlenu w stali, skład chemiczny żużla i stali, temperatura, poziom sygnału dźwiękowego, całkowite zniekształcenie harmonicznych (THD) napięcia i prądu łuku elektrycznego. Model dynamiczny został stworzony, celem sterowania procesem wdmuchiwania tlenu i węgla, aby uzyskać odpowiedni skład chemiczny, aktywność tlenu i temperaturę przy spuście przez utrzymanie dobrego spieniania w trakcie procesu, przy niższym zużyciu energii i czasie wytopu. Model zaczyna funkcjonować po pierwszym pomiarze zawartości C i od tego momentu steruje wdmuchiwaniem węgla i tlenu. Model ten został zintegrowany z system automatycznego sterowania piecem łukowym.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.