Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Human motion is required in many simulation models. However, generating such a motion is quite complex and in industrial simulation cases represents an overhead that often cannot be accepted. There are several common file formats that are used nowadays for saving motion data that can be used in gaming engines or 3D editing software. Using such motion sets still requires considerable effort in creating logic for motion playing, blending, and associated object manipulation in the scene. Additionally, every action needs to be described with the motion designed for the target scene environment. This is where the Motion Model Units (MMU) concept was created. Motion Model Units represent a new way of transferring human motion data together with logic and scene manipulation capabilities between motion vendors and simulation platforms. The MMU is a compact software bundle packed in a standardized way, provides machine-readable capabilities and interface description that makes it interchangeable, and is adaptable to the scene. Moreover, it is designed to represent common actions in a task-oriented way, which allows simplifying the scenario creation to a definition of tasks and their timing. The underlying Motion Model Interface (MMI) has become an open standard and is currently usable in MOSIM framework, which provides the implementation of the standard for the Unity gaming engine and works on implementation for the Unreal Engine are under way. This paper presents two implementation examples for the MMU using direct C# programming, and using C# for Unity and MOSIM MMU generator as a helping tool. The key points required to build a working MMU are presented accompanied by an open-source code that is available for download and experimenting.
EN
This paper presents a new algorithm that approximates the forces that develop between a human hand and the handles of a climbing wall. A hand-to-handle model was developed using this algorithm for the Open Dynamics Engine physics solver, which can be plugged into a full-body climbing simulation to improve results. The model data are based on biomechanical measurements of the average population presented in previously published research. The main objective of this work was to identify maximum forces given hand orientation and force direction with respect to the climbing wall handles. Stated as a nonlinear programming problem, solution was achieved by applying a stochastic Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The algorithm for force approximation works consistently and provides reasonable results when gravity is neglected. However, including gravity results in a number of issues. Since the weight of the hand is small in relation to the handto-handle forces, neglecting gravity does not significantly affect the reliability and quality of the solution.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.