Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Potassium response in some Malawi soils
EN
Potassium (K) response curves were generated for some Malawi soils using four different rates of potassium fertilizer, with grass being used to estimate plant availability. The study was conducted to find the point of maximum response for potassium. The soils were characterized, limed and fertilized with equal amounts of nitrogen. Potassium was applied at four rates: 0.0, 0.1, 0.2 and 0.4 me K/100 cm3 soil. The K treated soils were put in pots and cropped with grass. The grass was harvested six weeks after planting, dried and weighed. In general, addition of potassium resulted in increased growth of grass in all soils, with some soils showing better response than others. For montmorillonitic soils and soils with mixed mineralogy response was linear up to the highest rate of 0.4 me K/100 cm3. Apparently the 0.4 me K/100 cm3 soil was not enough to give maximum yield for these potassium depleted soils. For the kaolinitic soils 0.4 me K/100 cm3 soil was beyond point of maximum response. The variation of response to added potassium in the different soils calls for soil specific fertilizer additions. Smallholder farmers should move from blanket (crop specific) fertilizer recommendations currently being used to crop and soil specific fertilizer recommendations. Basal fertilizer dressings (starter packs) should always contain potassium. Correlation and calibration studies should be conducted to establish a potassium low optimum level for Malawi soils.
EN
A snapshot survey was conducted to assess ground and surface water contamination by atrazine and metolachlor in the Zomba/Bvumbwe region. Ground and surface water samples were collected and their atrazine and metolachlor were extracted using ethyl acetate. The extracts were cleaned up using florisil, concentrated on a rotary evaporator and detected using thin layer chromatography. No herbicide residue was detected in the groundwater samples. In surface water samples atrazine was detected in 38% and metolachlor was detected in 15% of the samples. The concentrations of the herbicides were at their highest soon after the first run off event after herbicide application. The concentrations, however were generally below the World Health Organization's (WHO's) recommended maximum guideline values (2?g/ml atrazine and 10?g/ml) metolachlor). Following the first run off event concentrations of herbicides steadily decreased with time, decreasing to zero within eight weeks of herbicide application at 37% of the water sampling points that had herbicide contamination. Light soaking rains, higher clay content, flat land, longer distance between agricultural land and surface water body (filtering area), lower herbicide application rates and herbicide incorporation seemed to reduce herbicide export to surface water. Based on the study it is recommended that regular monitoring of pesticides in water should be done and that quantification of the pesticides should be done more accurately using a gas or liquid chromatograph with appropriate detectors. It is also recommended to follow good land husbandry practices to reduce export of pesticides to surface water bodies.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.