Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The hospitals close to the residences can make problems for the environment as a consequence of sewage drained into the water stream. Sequencing batch biofilm reactor (SBBR) offers advantages for treating sewage; such as simple operation, flexible process, and cost-effective. The laboratory bench-scale experiments were carried out treating hospital wastewater (HWW) of one of Basrah hospital city by a fabricated SBBR reactor of 26 l working volume. The hospital wastewater has the following characteristics (average values): pH 7.3, BOD equal to 280 mg·l–1, COD equal to 550 mg·l–1, total phosphorus (TP) equal to 6.4 mg·l–1, ammonia (NH3-N) equal to 44 mg·l–1 and total suspended solid (TSS) equal to 272 mg·l–1. This research aims to estimate the performance of the SBBR system for treating hospital wastewater to enhance different effluent parameters such as COD, total nitrogen (TN), ammonia, and total phosphorous (TP) with various dissolved oxygen (DO) with range of 2.15–6.55 mg·l–1, the best DO values give these removal efficiencies for COD equal to 84.55%, NH3-N equal to 65.91% and TN between 78 and 18% for DO equal to 3.67 mg·l–1, while TP removal efficiency was 79.70% for DO equal to 6.55 mg·l–1. By comparison of the SBBR effluent with international standards for effluent sewage, it noticed COD concentration 85 mg·l–1, TN 12 mg·l–1 and TP 1.3 mg·l–1 met all standards (European, WHO, and China), while NH3-N 15 mg·l–1 was outside WHO and European standards, while satisfies only Chinese standard.
EN
This study was undertaken to estimate the energy potential of municipal solid waste via creating a relationship between the high heating value (HHV) and the fractions of physical composition of municipal solid waste MSW (% food, % plastic, % paper, % wood, % textile) into the two scenarios, namely wet MSW (as discarded) and dry (free moisture). The created models were determined based on the results of obtained from the analysis of the components of the Al-Diwaniyah MSW and then from previous studies which involved experimental ultimate analysis (% C, % O, % H, % N, %S) of MSW, supported by the equations and models of previous studies which were used for HHV calculation. SPSS Statistical software was used to prepare the models. For each scenario, the input datasets were 60 cases, taking into account the minimization of the data and the average of HHV that result from equations. Four models were created, two models for each status where R2 was 1.00 and 0.999 for dry and wet situation, respectively. However, the equations of verification process showed that the models which depended on the dry fractions are more accurate. The produced HHV from the dry and wet MSW components in the Al-Diwaniyah City is 8655 KJ/Kg and 6440 KJ/Kg, respectively (as discarded).
EN
The efficiency of a Sequencing Batch Biofilm Reactor (SBBR) for domestic wastewater treatment in Basrah was assessed. The experiments were carried out via a laboratory-scale SBBR cylindrical vessel used for this study, with geometric volume of 26 L, having an internal diameter of 15 cm, a height of 40 cm, and a working volume of 13 L. After a one-month start-up cycle for biofilm growth on the fibrous filler, the SBBR research test period lasted two months. The SBBR was run for three weeks to ensure that the biological treatment systems were mature and those steady-state requirements were reached, throughout the starting-up phase of operation, the removal efficiency for COD, NH3-N, TN, and TP were 95%, 89%, 85%, and 93% respectively. The impact of aeration time on the SBBR efficiency was also tested by removal of COD, ammonia, total nitrogen TN, and total phosphorous TP under different levels of dissolved oxygen DO (2.0 – 6.8) mg\L. The SBBR method proved to be an effective method for treating domestic wastewater in Basrah city. The COD, NH3-N, TN, and TP concentrations in the effluent were 42, 6.7, 9.0, and 1.0 mg/L, respectively, with the removal efficiency rates of 90.32 %, 86.24 %, 84.75 %, and 84.38 %. When comparing the SBBR effluent value to the WHO, European, Iraqi, and Chinese discharge standards, it was observed that the COD concentration (42 mg/L) met these standards. while ammonia (6.7 mg/L), TN (9.0 mg/L), and TP (1.0 mg/L) met the WHO, European, and Chinese standard only.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.