Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Arriving at a good combination of coding and modulation schemes that can achieve good error correction constitutes a challenge in digital communication systems. In this work, we explore the combination of permutation coding (PC) and pulse amplitude modulation (PAM) for mitigating channel errors in the presence of background noise and jitter. Since PAM is characterised with bi-polar constellations, Euclidean distance is a good choice for predicting the performance of such coded modulation setup. In order to address certain challenges facing PCs, we therefore introduce injections in the coding system, together with a modified form of PAM system. This modification entails constraining the PAM constellations to the size of the codeword’s symbol. The results obtained demonstrate the strength of the modified coded PAM system over the conventional PC coded PAM system.
EN
The article describes and compares two OFDM based communications schemes for reducing the effects of the combination of Narrowband Interference (NBI) and Impulsive Noise (IN), which are noise types typical in Power Line Communication (PLC). The two schemes are Modified BPSK-OFDM (called MBPSK, for brevity) and QFSK-OFDM (called QFSK, for brevity), which are non-conventional OFDM schemes. We give a description of the two schemes, showing how they are derived and also show their similarities and eventually compare their performances. Performance simulation results, in terms of bit error rate, are given to compare the systems under the effect of IN and NBI. The popular Middleton Class A model is used for modelling IN. The results show that MBPSK scheme outperforms the QFSK scheme in terms of minimum distance, and hence in terms of bit error probability when no preprocessing is performed. However, under clipping/nulling, both schemes eventually reach the bit error rate floor.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.